Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuronarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article . 2003
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuron
Article . 2003 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Neuron
Article . 2003
versions View all 4 versions

A Role for BMP Heterodimers in Roof Plate-Mediated Repulsion of Commissural Axons

Authors: Jane Dodd; Samantha J. Butler;

A Role for BMP Heterodimers in Roof Plate-Mediated Repulsion of Commissural Axons

Abstract

During spinal cord development, commissural neurons extend their axons ventrally, away from the roof plate. The roof plate is the source of a diffusible repellent that orients commissural axons in vitro and, thus, may regulate the trajectory of commissural axons in vivo. Of three Bmps expressed in the roof plate, BMP7, but not BMP6 or GDF7, mimics the roof plate activity in vitro. We show here that expression of both Bmp7 and Gdf7 by roof plate cells is required for the fidelity of commissural axon growth in vivo. We also demonstrate that BMP7 and GDF7 heterodimerize in vitro and that, under these conditions, GDF7 enhances the axon-orienting activity of BMP7. Our findings suggest that a GDF7:BMP7 heterodimer functions as a roof plate-derived repellent that establishes the initial ventral trajectory of commissural axons.

Related Organizations
Keywords

Homeodomain Proteins, MSX1 Transcription Factor, Mice, Knockout, Macromolecular Substances, Neuroscience(all), Chemotaxis, Growth Cones, Cell Differentiation, Cell Communication, Immunohistochemistry, Functional Laterality, Growth Differentiation Factors, Mice, Fetus, Bone Morphogenetic Proteins, COS Cells, Mutation, Basic Helix-Loop-Helix Transcription Factors, Animals, Dimerization, Body Patterning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    228
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
228
Top 10%
Top 10%
Top 1%
hybrid