Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Physical Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
European Physical Journal C: Particles and Fields
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aperta - TÜBİTAK Açık Arşivi
Other literature type . 2021
License: CC BY
versions View all 5 versions

Probing anomalous quartic $$\gamma \gamma \gamma \gamma $$ couplings in light-by-light collisions at the CLIC

Authors: İnan, S.; Kisselev, A.;

Probing anomalous quartic $$\gamma \gamma \gamma \gamma $$ couplings in light-by-light collisions at the CLIC

Abstract

AbstractThe anomalous quartic neutral couplings of the$$\gamma \gamma \gamma \gamma $$γγγγvertex in a polarized light-by-light scattering of the Compton backscattered photons at the CLIC are examined. Both differential and total cross sections are calculated for$$e^+e^-$$e+e-collision energies 1500 GeV and 3000 GeV. The helicity of the initial electron beams is taken to be$$\pm \,0.8$$±0.8. The unpolarized and SM cross sections for the same values of helicities are also estimated. The 95% C.L. exclusion limits on two anomalous photon couplings$$\zeta _1$$ζ1and$$\zeta _2$$ζ2are calculated. The best bounds on these couplings are found to be$$6.85 \times 10^{-16} \text { GeV}^{-4}$$6.85×10-16GeV-4and$$1.43 \times 10^{-15} \text { GeV}^{-4}$$1.43×10-15GeV-4, respectively. The results are compared with the exclusion bounds obtained previously for the LHC and HL-LHC. It is shown that the light-by-light scattering at the CLIC, especially the polarized, has a greater potential to search for the anomalous quartic neutral couplings of the$$\gamma \gamma \gamma \gamma $$γγγγvertex.

Related Organizations
Keywords

QB460-466, High Energy Physics - Phenomenology, Nuclear and particle physics. Atomic energy. Radioactivity, QC770-798, Astrophysics, High Energy Physics - Experiment

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Green
gold