Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2003 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Akt Signaling Regulates Side Population Cell Phenotype via Bcrp1 Translocation

Authors: Masaki, Mogi; Jiang, Yang; Jean-Francois, Lambert; Gerald A, Colvin; Ichiro, Shiojima; Carsten, Skurk; Ross, Summer; +3 Authors

Akt Signaling Regulates Side Population Cell Phenotype via Bcrp1 Translocation

Abstract

Akt is an important regulator of cell survival, growth, and glucose metabolism in many cell types, but the role of this signaling molecule in hematopoietic stem cells is poorly defined. Side population (SP) cells are enriched for hematopoietic stem cell activity and are defined by their ability to efficiently efflux Hoechst 33342. Bone marrow from Akt1-null mice exhibited a reduced SP fraction. However, bone marrow cellularity, growth factor-responsive progenitor cultures, and engraftable stem cells were normal in these mice. Treatment of bone marrow with LY294002, an inhibitor of the Akt effector protein phosphatidylinositol 3-kinase, led to a reversible loss of the SP fraction. Bcrp1, which encodes the Hoechst dye transporter, was translocated from the membrane to the intracellular compartment under conditions that promote the SP-depleted state. Lentivirus-mediated overexpression of Akt1 in bone marrow markedly increased the SP fraction, whereas there was no effect on bone marrow from Bcrp(-/-) mice. These data suggest that Akt signaling modulates the SP cell phenotype by regulating the expression of Bcrp1.

Related Organizations
Keywords

Models, Genetic, Lentivirus, Apoptosis, Bone Marrow Cells, Mice, Transgenic, Hematopoietic Stem Cells, Mice, Inbred C57BL, Mice, Lac Operon, Microscopy, Fluorescence, Chromones, ATP Binding Cassette Transporter, Subfamily G, Member 2, Animals, ATP-Binding Cassette Transporters, Benzimidazoles, Biotinylation, Cell Lineage, Enzyme Inhibitors, Growth Substances, Bone Marrow Transplantation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    148
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
148
Top 10%
Top 10%
Top 1%
gold