Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Brain Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Brain Research
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Brain Research
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Differential modulation of nerve growth factor receptor (p75) and cholinergic gene expression in purified p75-expressing and non-expressing basal forebrain neurons by BMP9

Authors: Aletta C, Schnitzler; Ignacio, Lopez-Coviella; Jan Krzysztof, Blusztajn;

Differential modulation of nerve growth factor receptor (p75) and cholinergic gene expression in purified p75-expressing and non-expressing basal forebrain neurons by BMP9

Abstract

The synthesis of acetylcholine and its release from basal forebrain cholinergic neurons (BFCN) that innervate the cerebral cortex and hippocampus are considered essential processes for normal learning, memory and attention. We have developed a purification and cell culture method of BFCN in order to examine the regulation of their cholinergic phenotype. Cells isolated from the septal region of late embryonic mice were purified by fluorescence-activated cell sorting based on their expression of the nerve growth factor receptor (p75), a surface marker for mature BFCN. Consistent with previous reports, p75-positive (p75+) cells were enriched in choline acetyltransferase (ChAT) and the high-affinity choline transporter (ChT), as measured by reverse transcriptase PCR. In culture, these cells maintained their gene expression of p75, ChAT and ChT, while p75-negative (p75-) cells had a low expression of these genes. Incubation of the cells with BMP9 not only increased p75 and ChAT gene expression in p75- cells, but also augmented the expression of these genes in p75+ cells. Conversely, BMP9 decreased ChT gene expression in p75+ cells and had no such effect in p75- cells. Immunostaining confirmed that p75 protein expression was modulated by BMP9 in a similar way as p75 mRNA, and also revealed that only a subset of p75- cells respond to BMP9 in this manner. These data suggest that mature BFCN in culture may express their cholinergic phenotype in the absence of exogenous trophic input, but that BMP9 can further modulate this phenotype. Moreover, BMP9 induces the cholinergic phenotype in a set of basal forebrain non-cholinergic neurons or precursor cells.

Related Organizations
Keywords

Neurons, Analysis of Variance, Reverse Transcriptase Polymerase Chain Reaction, Immunoblotting, Gene Expression, Membrane Transport Proteins, Flow Cytometry, Immunohistochemistry, Receptor, Nerve Growth Factor, Choline O-Acetyltransferase, Mice, Prosencephalon, Tubulin, Bone Morphogenetic Proteins, Animals, RNA, Messenger, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Average
bronze