Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The EMBO Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The EMBO Journal
Article . 2010 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The EMBO Journal
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The EMBO Journal
Article . 2010
versions View all 2 versions

The function of classical and alternative non-homologous end-joining pathways in the fusion of dysfunctional telomeres

Authors: Rekha, Rai; Hong, Zheng; Hua, He; Ying, Luo; Asha, Multani; Phillip B, Carpenter; Sandy, Chang;

The function of classical and alternative non-homologous end-joining pathways in the fusion of dysfunctional telomeres

Abstract

Repair of DNA double-stranded breaks (DSBs) is crucial for the maintenance of genome stability. DSBs are repaired by either error prone non-homologous end-joining (NHEJ) or error-free homologous recombination. NHEJ precedes either by a classic, Lig4-dependent process (C-NHEJ) or an alternative, Lig4-independent one (A-NHEJ). Dysfunctional telomeres arising either through natural attrition due to telomerase deficiency or by removal of telomere-binding proteins are recognized as DSBs. In this report, we studied which end-joining pathways are required to join dysfunctional telomeres. In agreement with earlier studies, depletion of Trf2 resulted in end-to-end chromosome fusions mediated by the C-NHEJ pathway. In contrast, removal of Tpp1-Pot1a/b initiated robust chromosome fusions that are mediated by A-NHEJ. C-NHEJ is also dispensable for the fusion of naturally shortened telomeres. Our results reveal that telomeres engage distinct DNA repair pathways depending on how they are rendered dysfunctional, and that A-NHEJ is a major pathway to process dysfunctional telomeres.

Keywords

Mice, Knockout, DNA Repair, Chromosomal Proteins, Non-Histone, Telomere-Binding Proteins, Intracellular Signaling Peptides and Proteins, Antigens, Nuclear, Telomere, Shelterin Complex, DNA-Binding Proteins, Mice, Animals, Humans, Telomeric Repeat Binding Protein 2, Tumor Suppressor p53-Binding Protein 1, Ku Autoantigen, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    157
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
157
Top 1%
Top 10%
Top 1%
gold