Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEBS Lettersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEBS Letters
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Letters
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
FEBS Letters
Article . 2008
versions View all 3 versions

Internal translation initiation on the foot‐and‐mouth disease virus IRES is affected by ribosomal stalk conformation

Authors: Martínez-Azorín, Francisco; Remacha, Miguel; Martínez-Salas, Encarnación; Ballesta, Juan P.G.;

Internal translation initiation on the foot‐and‐mouth disease virus IRES is affected by ribosomal stalk conformation

Abstract

A human cell line, in which expression of the ribosomal stalk proteins P1 and P2 has been suppressed by RNAi technology, has been used to test how the loss of these proteins affects IRES‐dependent translation. Foot‐and‐mouth disease virus (FMDV) IRES‐dependent translation from a bicistronic construct is about three fold higher in the P1/P2‐depleted cells than in control cells in the presence of Lb protease. By contrast, no effect on Hepatitis C virus (HCV) IRES translation was observed. These results emphasize the functional heterogeneity of the IRES and they highlight a functional connection between the ribosomal stalk and picornavirus IRES‐dependent translation.

Keywords

Ribosomal Proteins, Ribosomal stalk, Binding Sites, Phosphoproteins, Cell Line, IRES, Foot-and-Mouth Disease Virus, Mammalian cell, Doxycycline, Translation initiation, Humans, Peptide Chain Initiation, Translational, Ribosomes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Average
Average
Average
bronze