Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Journal of Immunology
Article . 2000 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Journal of Immunology
Article . 2000 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 3 versions

Association of STAT1, STAT3 and STAT5 proteins with the IL-2 receptor involves different subdomains of the IL-2 receptor β chain

Authors: M, Delespine-Carmagnat; G, Bouvier; J, Bertoglio;

Association of STAT1, STAT3 and STAT5 proteins with the IL-2 receptor involves different subdomains of the IL-2 receptor β chain

Abstract

Upon IL-2 stimulation of T lymphocytes, the IL-2 receptor (IL-2R) becomes phosphorylated on specific tyrosine residues which serve as docking sites for proteins containing SH2 or phosphotyrosine binding domains. To study the interaction of the IL-2Rbeta chain with Shc and STAT proteins, subdomains of the IL-2Rbeta chain were expressed as tyrosine-phosphorylated glutathione S-transferase fusion proteins and used to pull-down interacting proteins from Kit 225 cell lysates. These experiments provide direct biochemical evidence that binding to the IL-2R of the adaptor protein Shc requires phosphorylation of Tyr-338 in the IL-2Rbeta acidic subdomain. In addition, we report that STAT proteins that are activated by IL-2, i.e. STAT1, STAT3 and STAT5, indeed associate with the IL-2Rbeta chain. Both the A and B isoforms of STAT5 were found to associate with Tyr-510 of the IL-2Rbeta C-terminal region, depending on its phosphorylation. In contrast, STAT1 and STAT3 associated with the IL-2Rbeta chain through its acidic subdomain. These results indicate that the interaction between IL-2Rbeta and STAT1 or 3 does not require either phosphorylation of the receptor or even the presence of tyrosine residues of IL-2Rbeta. Thus, the IL-2R recruits STAT proteins through different modes of interaction.

Keywords

STAT3 Transcription Factor, Binding Sites, Src Homology 2 Domain-Containing, Transforming Protein 1, Tumor Suppressor Proteins, Proteins, Receptors, Interleukin-2, Milk Proteins, Cell Line, DNA-Binding Proteins, Adaptor Proteins, Vesicular Transport, STAT1 Transcription Factor, Shc Signaling Adaptor Proteins, STAT5 Transcription Factor, Trans-Activators, Humans, Interleukin-2, Tyrosine, Phosphorylation, Adaptor Proteins, Signal Transducing, GRB2 Adaptor Protein

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%
bronze