Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2006 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Cell Cycle-controlled Interaction of Nucleolin with the Retinoblastoma Protein and Cancerous Cell Transformation

Authors: Edgar, Grinstein; Ying, Shan; Leonid, Karawajew; Peter J F, Snijders; Chris J L M, Meijer; Hans-Dieter, Royer; Peter, Wernet;

Cell Cycle-controlled Interaction of Nucleolin with the Retinoblastoma Protein and Cancerous Cell Transformation

Abstract

Retinoblastoma protein (Rb) is a multifunctional tumor suppressor, frequently inactivated in certain types of human cancer. Nucleolin is an abundant multifunctional phosphoprotein of proliferating and cancerous cells, recently identified as cell cycle-regulated transcription activator, controlling expression of human papillomavirus type 18 (HPV18) oncogenes in cervical cancer. Here we find that nucleolin is associated with Rb in intact cells in the G1 phase of the cell cycle, and the complex formation is mediated by the growth-inhibitory domain of Rb. Association with Rb inhibits the DNA binding function of nucleolin and in consequence the interaction of nucleolin with the HPV18 enhancer, resulting in Rb-mediated repression of the HPV18 oncogenes. The intracellular distribution of nucleolin in epithelial cells is Rb-dependent, and an altered nucleolin localization in human cancerous tissues results from a loss of Rb. Our findings suggest that deregulated nucleolin activity due to a loss of Rb contributes to tumor development in malignant diseases, thus providing further insights into the molecular network for the Rb-mediated tumor suppression.

Keywords

Nucleolin, Human papillomavirus 18, Tumor Suppressor Proteins, Cell Cycle, RNA-Binding Proteins, Phosphoproteins, Retinoblastoma Protein, Gene Expression Regulation, Neoplastic, Cell Transformation, Neoplastic, Cell Line, Tumor, Neoplasms, Humans, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 10%
gold