Sequential Action of Ets-1 and Sp1 in the Activation of the Human β-1,4-Galactosyltransferase V Gene Involved in Abnormal Glycosylation Characteristic of Cancer Cells
pmid: 17656364
Sequential Action of Ets-1 and Sp1 in the Activation of the Human β-1,4-Galactosyltransferase V Gene Involved in Abnormal Glycosylation Characteristic of Cancer Cells
Malignant transformation is associated with increased gene expression of beta-1,4-galactosyltransferase (beta-1,4-GalT) V, which contributes to the biosynthesis of highly branched N-linked oligosaccharides characteristic of cancer cells. Our previous study showed that expression of the human beta-1,4-GalT V gene is regulated by Sp1 (Sato, T., and Furukawa, K. (2004) J. Biol. Chem. 279, 39574-39583), and a subsequent study showed that the gene expression is also activated by Ets-1, a product of the oncogene (Sato, T., and Furukawa, K. (2005) Glycoconj. J. 22, 365). Herein we report the mechanism of beta-1,4-GalT V gene activation by these transcription factors. The gene expression and promoter activity of beta-1,4-GalT V increased when the ets-1 cDNA was transfected into A549 cells, which contain a small amount of Ets-1, but decreased dramatically when the dominant-negative ets-1 cDNA was transfected into HepG2 cells, which contain a large amount of Ets-1. Luciferase assays using deletion constructs of the beta-1,4-GalT V gene promoter showed that promoter region -116 to +22 is critical for the transcriptional activation of the gene by Ets-1. Despite the presence of one Ets-1-binding site, which overlapped the Sp1-binding site, electrophoretic mobility shift assays showed that the region bound preferentially to Sp1 rather than to Ets-1. To solve this problem, we examined the transcriptional regulation of the human Sp1 gene by Ets-1 and found that the gene expression and promoter activity of Sp1 are regulated by Ets-1 in cancer cells. Functional analyses of two Ets-1-binding sites in the Sp1 gene promoter showed that only Ets-1-binding site -413 to -404 is involved in the activation of the gene by Ets-1. These results indicate that Ets-1 enhances expression of the beta-1,4-GalT V gene through activation of the Sp1 gene in cancer cells.
Transcriptional Activation, Binding Sites, Base Sequence, Models, Genetic, Sp1 Transcription Factor, Molecular Sequence Data, Blotting, Northern, Galactosyltransferases, Models, Biological, Protein Structure, Tertiary, Gene Expression Regulation, Neoplastic, Proto-Oncogene Protein c-ets-1, Cell Line, Tumor, Humans, Promoter Regions, Genetic, Gene Deletion
Transcriptional Activation, Binding Sites, Base Sequence, Models, Genetic, Sp1 Transcription Factor, Molecular Sequence Data, Blotting, Northern, Galactosyltransferases, Models, Biological, Protein Structure, Tertiary, Gene Expression Regulation, Neoplastic, Proto-Oncogene Protein c-ets-1, Cell Line, Tumor, Humans, Promoter Regions, Genetic, Gene Deletion
15 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).35 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
