Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The University of Me...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2012 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2013
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2012
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2012
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions

Differential Expression of CD96 Surface Molecule Represents CD8+ T Cells with Dissimilar Effector Function during HIV-1 Infection

Authors: Eriksson, Emily M; Keh, Chris E; Deeks, Steven G; Martin, Jeffrey N; Hecht, Frederick M; Nixon, Douglas F;

Differential Expression of CD96 Surface Molecule Represents CD8+ T Cells with Dissimilar Effector Function during HIV-1 Infection

Abstract

During HIV-1 infection, immune dysregulation and aberrant lymphocyte functions are well-established characteristics. Cell surface molecules are important for immunological functions and changes in expression can affect lymphocyte effector functions, thereby contributing to pathogenesis and disease progression. In this study we have focused on CD96, a member of the IgG superfamily receptors that have generated increasing recent interest due to their adhesive and co-stimulatory functions in addition to immunoregulatory capacity. CD96 is expressed by both T and NK cells. Although the function of CD96 is not completely elucidated, it has been shown to have adhesive functions and enhance cytotoxicity. Interestingly, CD96 may also have inhibitory functions due to its immunoreceptor tyrosine-based inhibitory motif (ITIM). The clinical significance of CD96 is still comparatively limited although it has been associated with chronic Hepatitis B infection and disease progression. CD96 has not previously been studied in the context of HIV-1 infection, but due to its potential importance in immune regulation and relevance to chronic disease, we examined CD96 expression in relation to HIV-1 pathogenesis. In a cross-sectional analysis, we investigated the CD8(+) T cell expression of CD96 in cohorts of untreated HIV-1 infected adults with high viral loads (non-controllers) and low viral loads ("elite" controllers). We demonstrated that elite controllers have significantly higher CD96 mean fluorescence intensity on CD8(+) T cells compared to HIV-1 non-controllers and CD96 expression was positively associated with CD4(+) T cell counts. Functional assessment showed that CD8(+) T cells lacking CD96 expression represented a population that produced both perforin and IFN-γ following stimulation. Furthermore, CD96 expression on CD8(+) T cells was decreased in presence of lipopolysaccharide in vitro. Overall, these findings indicate that down-regulation of CD96 is an important aspect of HIV-1 pathogenesis and differential expression is related to cell effector functions and HIV-1 disease course.

Countries
United States, Australia
Keywords

Lipopolysaccharides, General Science & Technology, Science, Immunology, Mononuclear, 610, Down-Regulation, HIV Infections, CD8-Positive T-Lymphocytes, Interferon-gamma, Antigens, CD, Leukocytes, 2.1 Biological and endogenous factors, Humans, Antigens, Biomedical and Clinical Sciences, Perforin, Q, R, 500, Cell Differentiation, CD, CD4 Lymphocyte Count, Infectious Diseases, Good Health and Well Being, Gene Expression Regulation, Medical Microbiology, Disease Progression, HIV-1, Leukocytes, Mononuclear, Sexually Transmitted Infections, HIV/AIDS, Medicine, Infection, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Average
Green
gold