Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2004 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Inositol 1,4,5-Trisphosphate Receptor Localization and Stability in Neonatal Cardiomyocytes Requires Interaction with Ankyrin-B

Authors: Peter J, Mohler; Jonathan Q, Davis; Lydia H, Davis; Janis A, Hoffman; Peter, Michaely; Vann, Bennett;

Inositol 1,4,5-Trisphosphate Receptor Localization and Stability in Neonatal Cardiomyocytes Requires Interaction with Ankyrin-B

Abstract

The molecular mechanisms required for inositol 1,4,5-trisphosphate receptor (InsP(3)R) targeting to specialized endoplasmic reticulum membrane domains are unknown. We report here a direct, high affinity interaction between InsP(3)R and ankyrin-B and demonstrate that this association is critical for InsP(3)R post-translational stability and localization in cultures of neonatal cardiomyocytes. Recombinant ankyrin-B membrane-binding domain directly interacts with purified cerebellar InsP(3)R (K(d) = 2 nm). 220-kDa ankyrin-B co-immunoprecipitates with InsP(3)R in tissue extracts from brain, heart, and lung. Alanine-scanning mutagenesis of the ankyrin-B ANK (ankyrin repeat) repeat beta-hairpin loop tips revealed that consecutive ANK repeat beta-hairpin loop tips (repeats 22-24) are required for InsP(3)R interaction, thus providing the first detailed evidence of how ankyrin polypeptides associate with membrane proteins. Pulse-chase biosynthesis experiments demonstrate that reduction or loss of ankyrin-B in ankyrin-B (+/-) or ankyrin-B (-/-) neonatal cardiomyocytes leads to approximately 3-fold reduction in half-life of newly synthesized InsP(3)R. Furthermore, interactions with ankyrin-B are required for InsP(3)R stability as abnormal InsP(3)R phenotypes, including mis-localization, and reduced half-life in ankyrin-B (+/-) cardiomyocytes can be rescued by green fluorescent protein (GFP)-220-kDa ankyrin-B but not by GFP-220-kDa ankyrin-B mutants, which do not associate with InsP(3)R. These new results provide the first physiological evidence of a molecular partner required for early post-translational stability of InsP(3)R.

Keywords

Ankyrins, Models, Molecular, Dose-Response Relationship, Drug, Cell Membrane, Green Fluorescent Proteins, Brain, Endoplasmic Reticulum, Cell Line, Kinetics, Luminescent Proteins, Mice, Animals, Newborn, Microscopy, Fluorescence, Mutagenesis, Mutation, Animals, Humans, Inositol 1,4,5-Trisphosphate Receptors, Cattle, Calcium Channels

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    84
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
84
Top 10%
Top 10%
Top 10%
gold