Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the Ameri...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hal
Article . 2014
Data sources: Hal
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-Inserm
Article . 2014
Data sources: HAL-Inserm
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2014
Data sources: Hal
Journal of the American Society of Nephrology
Article . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions

Direct Action of Endothelin-1 on Podocytes Promotes Diabetic Glomerulosclerosis

Authors: Lenoir, Olivia; Milon, Marine; Virsolvy, Anne; Henique, Carole; Schmitt, Alain; Massé, Jean-Marc; Kotelevtsev, Yuri; +4 Authors

Direct Action of Endothelin-1 on Podocytes Promotes Diabetic Glomerulosclerosis

Abstract

The endothelin system has emerged as a novel target for the treatment of diabetic nephropathy. Endothelin-1 promotes mesangial cell proliferation and sclerosis. However, no direct pathogenic effect of endothelin-1 on podocytes has been shown in vivo and endothelin-1 signaling in podocytes has not been investigated. This study investigated endothelin effects in podocytes during experimental diabetic nephropathy. Stimulation of primary mouse podocytes with endothelin-1 elicited rapid calcium transients mediated by endothelin type A receptors (ETARs) and endothelin type B receptors (ETBRs). We then generated mice with a podocyte-specific double deletion of ETAR and ETBR (NPHS2-Cre×Ednra(lox/lox)×Ednrb(lox/lox) [Pod-ETRKO]). In vitro, treatment with endothelin-1 increased total β-catenin and phospho-NF-κB expression in wild-type glomeruli, but this effect was attenuated in Pod-ETRKO glomeruli. After streptozotocin injection to induce diabetes, wild-type mice developed mild diabetic nephropathy with microalbuminuria, mesangial matrix expansion, glomerular basement membrane thickening, and podocyte loss, whereas Pod-ETRKO mice presented less albuminuria and were completely protected from glomerulosclerosis and podocyte loss, even when uninephrectomized. Moreover, glomeruli from normal and diabetic Pod-ETRKO mice expressed substantially less total β-catenin and phospho-NF-κB compared with glomeruli from counterpart wild-type mice. This evidence suggests that endothelin-1 drives development of glomerulosclerosis and podocyte loss through direct activation of endothelin receptors and NF-κB and β-catenin pathways in podocytes. Notably, both the expression and function of the ETBR subtype were found to be important. Furthermore, these results indicate that activation of the endothelin-1 pathways selectively in podocytes mediates pathophysiologic crosstalk that influences mesangial architecture and sclerosis.

Keywords

Male, Mice, Knockout, Endothelin-1, Podocytes, NF-kappa B, Down-Regulation, Receptor, Endothelin A, [SDV.MHEP.UN] Life Sciences [q-bio]/Human health and pathology/Urology and Nephrology, Receptor, Endothelin B, [SDV] Life Sciences [q-bio], Mice, Inbred C57BL, Mice, [SDV.BBM] Life Sciences [q-bio]/Biochemistry, Molecular Biology, Animals, Diabetic Nephropathies, beta Catenin, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    89
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
89
Top 10%
Top 10%
Top 1%
Green
bronze
Related to Research communities