<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Identification of Novel Elements of the Drosophila Blisterome Sheds Light on Potential Pathological Mechanisms of Several Human Diseases

Identification of Novel Elements of the Drosophila Blisterome Sheds Light on Potential Pathological Mechanisms of Several Human Diseases
Main developmental programs are highly conserved among species of the animal kingdom. Improper execution of these programs often leads to progression of various diseases and disorders. Here we focused on Drosophila wing tissue morphogenesis, a fairly complex developmental program, one of the steps of which--apposition of the dorsal and ventral wing sheets during metamorphosis--is mediated by integrins. Disruption of this apposition leads to wing blistering which serves as an easily screenable phenotype for components regulating this process. By means of RNAi-silencing technique and the blister phenotype as readout, we identify numerous novel proteins potentially involved in wing sheet adhesion. Remarkably, our results reveal not only participants of the integrin-mediated machinery, but also components of other cellular processes, e.g. cell cycle, RNA splicing, and vesicular trafficking. With the use of bioinformatics tools, these data are assembled into a large blisterome network. Analysis of human orthologues of the Drosophila blisterome components shows that many disease-related genes may contribute to cell adhesion implementation, providing hints on possible mechanisms of these human pathologies.
- University of Lausanne Switzerland
- University of Lausanne Switzerland
- University of Lausanne Switzerland
Science, Gene Expression Profiling, Q, R, Computational Biology, Gene Expression Regulation, Developmental, Molecular Sequence Annotation, Phenotype, Morphogenesis, Medicine, Animals, Humans, Wings, Animal, Drosophila, Gene Regulatory Networks, Genetic Predisposition to Disease, RNA Interference, Genetic Association Studies, Research Article
Science, Gene Expression Profiling, Q, R, Computational Biology, Gene Expression Regulation, Developmental, Molecular Sequence Annotation, Phenotype, Morphogenesis, Medicine, Animals, Humans, Wings, Animal, Drosophila, Gene Regulatory Networks, Genetic Predisposition to Disease, RNA Interference, Genetic Association Studies, Research Article
37 Research products, page 1 of 4
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average