Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neuroscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Neuroscience
Article . 2010 . Peer-reviewed
License: CC BY NC SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Dicer Is Required for the Transition from Early to Late Progenitor State in the Developing Mouse Retina

Authors: Thomas A. Reh; Sean Georgi;

Dicer Is Required for the Transition from Early to Late Progenitor State in the Developing Mouse Retina

Abstract

MicroRNAs (miRNAs), small 19–25 nucleotide RNAs that influence gene expression through posttranscriptional regulation of mRNA translation and degradation, have recently emerged as important regulators of neural development. Using conditional knock-out of Dicer, an RNase III enzyme required for miRNA maturation, previous studies have demonstrated an essential role for miRNAs in mouse cortical, inner ear, and olfactory development. However, a previous study (Damiani et al., 2008) using aChx10cremouse to delete Dicer in retinal progenitors reported no defects in the retina before the second postnatal week, suggesting that miRNAs are not required for mouse retinal development. In an effort to further study the role of miRNAs during retinal development and resolve this apparent conflict, we conditionally knocked out Dicer using a different (αPax6cre) line of transgenic mice. In contrast to the previous study, we demonstrate an essential role for miRNAs during mouse retinal development. In the absence of Dicer in the embryonic retina, production of early generated cell types (ganglion and horizontal cells) is increased, and markers of late progenitors are not expressed. This phenotype persists into postnatal retina, in which we find the Dicer-deficient progenitors fail to generate late-born cell types such as rods and Müller glia but continue to generate ganglion cells. We further characterize the dynamic expression of miRNAs during retinal progenitor differentiation and provide a comprehensive profile of miRNAs expressed during retinal development. We conclude that Dicer is necessary for the developmental change in competence of the retinal progenitor cells.

Related Organizations
Keywords

Mice, Knockout, Ribonuclease III, Neurogenesis, Stem Cells, Cell Differentiation, Mice, Transgenic, Retina, DEAD-box RNA Helicases, Mice, Inbred C57BL, Mice, MicroRNAs, Animals, Newborn, Endoribonucleases, Animals

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    131
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
131
Top 10%
Top 10%
Top 1%
hybrid