Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Development
Article . 2016 . Peer-reviewed
Data sources: Crossref
Development
Article . 2017
versions View all 2 versions

SUMO regulates somatic cyst stem cells maintenance and directly targets hedgehog pathway in adult Drosophila testis

Authors: Xiangdong, Lv; Chenyu, Pan; Zhao, Zhang; Yuanxin, Xia; Hao, Chen; Shuo, Zhang; Tong, Guo; +4 Authors

SUMO regulates somatic cyst stem cells maintenance and directly targets hedgehog pathway in adult Drosophila testis

Abstract

SUMO (Small ubiquitin-related modifier) modification (SUMOylation) is a highly dynamic post-translational modification (PTM) playing important roles in tissue development and disease progression. However, its function in adult stem cell maintenance is largely unknown. Here we report the function of SUMOylation in somatic cyst stem cells (CySCs) self-renewal in adult Drosophila testis. The SUMO pathway cell-autonomously regulates CySCs maintenance. Reduction of SUMOylation promotes premature differentiation of CySCs and impedes the proliferation of CySCs, which finally reduce the number of CySCs. Consistently, CySC clones carrying mutation of the SUMO conjugating enzyme are rapidly lost. Furthermore, inhibition of SUMO pathway phenocopies the disruption of Hedgehog (Hh) pathway, and can block the promoted proliferation of CySCs by Hh activation. Importantly, SUMO pathway directly regulates the SUMOylation of Hh pathway transcriptional factor, Cubitus interruptus (Ci), which is required for promoting CySCs proliferation. Thus, we conclude that SUMO directly targets Hh pathway and regulates CySCs maintenance in adult Drosophila testis.

Related Organizations
Keywords

Male, Aging, Stem Cells, Sumoylation, Cell Differentiation, Epistasis, Genetic, Drosophila melanogaster, Testis, Small Ubiquitin-Related Modifier Proteins, Animals, Drosophila Proteins, Hedgehog Proteins, Cell Proliferation, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
bronze