Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions

Accessory ESCRT-III proteins selectively regulate Rab11-exosome biogenesis inDrosophilasecondary cells

Authors: Pauline P. Marie; Shih-Jung Fan; Claudia C. Mendes; S. Mark Wainwright; Adrian L. Harris; Deborah C. I. Goberdhan; Clive Wilson;

Accessory ESCRT-III proteins selectively regulate Rab11-exosome biogenesis inDrosophilasecondary cells

Abstract

AbstractExosomes are secreted nanovesicles with potent signalling activity that are initially formed as intraluminal vesicles (ILVs) in multivesicular endosomes, which subsequently fuse with the plasma membrane. These ILVs are made in both late endosomes and recycling endosomes, the latter marked by the small GTPase Rab11 and generating exosomes with different cargos and functions. Core proteins within four Endosomal Sorting Complex Required for Transport (ESCRT) assemblies (0-III) play key sequential roles in late endosomal exosome biogenesis and ILV-mediated destruction of ubiquitinylated cargos through the endolysosomal system. They also control additional cellular processes, such as cytokinesis and other vesicle budding. By contrast, the functions of several accessory ESCRTs are not well defined. Here we assess the ESCRT-dependency of Rab11-exosomes, using RNA knockdown inDrosophilasecondary cells (SCs) of the male accessory gland, which have unusually enlarged Rab11-positive compartments. Unexpectedly, not only are core proteins in all four ESCRT complexes required for Rab11-exosome formation, but also accessory ESCRT-III proteins, CHMP1, CHMP5 and IST1. Suppressing expression of these accessory proteins does not affect other aspects of cell morphology, unlike most core ESCRT knockdowns, and does not lead to accumulation of ubiquitinylated cargos. We conclude that accessory ESCRT-III components have a specific and potentially ubiquitin-independent role in Rab11-exosome generation, which might provide a target for blocking the pro-tumorigenic activities of these vesicles in cancer.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Related to Research communities
Cancer Research