Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neurosciencearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuroscience
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Protein array analysis of oligomerization-induced changes in alpha-synuclein protein–protein interactions points to an interference with Cdc42 effector proteins

Authors: C, Schnack; K M, Danzer; B, Hengerer; F, Gillardon;

Protein array analysis of oligomerization-induced changes in alpha-synuclein protein–protein interactions points to an interference with Cdc42 effector proteins

Abstract

Aggregation of alpha-synuclein may contribute to neuropathology in Parkinson's disease patients and in transgenic animal models. Natively unfolded alpha-synuclein binds to various proteins and conformational changes due to alpha-synuclein misfolding may alter physiological interactions. In the present study, we used protein arrays spotted with 5000 recombinant human proteins for a large scale interaction analysis of monomeric versus oligomeric alpha-synuclein. Monomeric alpha-synuclein bound to arrayed cAMP regulated phosphoprotein 19 and binding appears to be disrupted by alpha-synuclein oligomerization. Incubation with recombinant alpha-synuclein oligomers lead to the identification of several GTPase activating proteins and Cdc42 effector proteins as binding partners. Protein database searches revealed a Cdc42/Rac interactive binding domain in some interactors. To demonstrate in vivo relevance, we analyzed brainstem protein extracts from alpha-synuclein(A30P) transgenic mice. Pull-down assays using beads conjugated with a Cdc42/Rac interactive binding domain lead to an enrichment of endogenous alpha-synuclein oligomers. Cdc42 effector proteins were also co-immunoprecipitated with alpha-synuclein from brainstem lysates and were colocalized with alpha-synuclein aggregates in brain sections by double immunostaining. By two-dimensional gel electrophoretic analysis of synaptosomal fractions from transgenic mouse brains we detected additional isoforms of septin 6, a downstream target of Cdc42 effector proteins. Small GTPases have recently been identified in a genetic modifier screen to suppress alpha-synuclein toxicity in yeast. Our data indicate that components of small GTPase signal transduction pathways may be directly targeted by alpha-synuclein oligomers which potentially leads to signaling deficits and neurodegeneration.

Keywords

Protein Folding, Protein Conformation, Blotting, Western, Protein Array Analysis, Brain, Mice, Transgenic, Parkinson Disease, Microscopy, Atomic Force, Immunohistochemistry, Recombinant Proteins, Mice, alpha-Synuclein, Animals, Humans, Immunoprecipitation, Electrophoresis, Gel, Two-Dimensional, cdc42 GTP-Binding Protein

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%