Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Neurochem...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Neurochemistry
Article . 1991 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Chronic Electroconvulsive Treatment Augments Coupling of the GTP‐Binding Protein Gs to the Catalytic Moiety of Adenylyl Cyclase in a Manner Similar to That Seen with Chronic Antidepressant Drugs

Authors: H, Ozawa; M M, Rasenick;

Chronic Electroconvulsive Treatment Augments Coupling of the GTP‐Binding Protein Gs to the Catalytic Moiety of Adenylyl Cyclase in a Manner Similar to That Seen with Chronic Antidepressant Drugs

Abstract

Abstract: A significant increase of guanylylimidodiphosphate (GppNHp)‐, fluoride‐, and forskolin‐stimulated adenylyl cyclase was observed in synaptic membrane preparations from rat cerebral cortex subsequent to chronic electroconvulsive shock (ECS) treatment. This effect required at least five treatments over a course of 10 days. The inhibition of adenylyl cyclase induced by GppNHp was not affected by these treatments. The dissociation constant (KD) and maximal binding for the photoaffinity GTP analog, [32P]P3‐(4‐azidoanilido)‐P1‐5′‐GTP ([32P]AAGTP), to each of the synaptic membrane G proteins also were unchanged after ECS treatment. Nonetheless, the transfer of [32P]AAGTP from Gi to Gs, which we suggest is indicative of the coupling between Gs and the adenylyl cyclase catalytic moiety, was accelerated by chronic ECS treatment but not by acute or sham treatment. Furthermore, chemical uncoupling of Gs from adenylyl cyclase rendered membranes from treated animals indistinguishable from controls. Finally, in all cases tested, membranes prepared from animals subjected to chronic treatment with amitriptyline or iprindole showed similar changes in the Gs‐mediated activation of adenylyl cyclase. Acute treatments produced effects similar to controls, and liver and kidney membranes from animals receiving chronic treatment showed no changes in adenylyl cyclase despite the marked changes seen in brain. These results suggest that chronic administration of ECS enhances coupling between Gs and adenylyl cyclase enzyme and modifies interactions between Gs and Gi.

Keywords

Cerebral Cortex, Iprindole, Male, Azides, Electroshock, Guanylyl Imidodiphosphate, Photochemistry, Amitriptyline, Colforsin, Affinity Labels, Rats, Inbred Strains, Antidepressive Agents, Rats, Enzyme Activation, Kinetics, GTP-Binding Proteins, Adenylyl Cyclase Inhibitors, Animals, Guanosine Triphosphate, Adenylyl Cyclases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    121
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
121
Top 10%
Top 10%
Top 10%
Related to Research communities