The Recessive Phenotype Displayed by a Dominant Negative Microphthalmia-Associated Transcription Factor Mutant Is a Result of Impaired Nuclear Localization Potential
The Recessive Phenotype Displayed by a Dominant Negative Microphthalmia-Associated Transcription Factor Mutant Is a Result of Impaired Nuclear Localization Potential
In the DNA binding domain of microphthalmia-associated transcription factor (MITF), four mutations are reported: mi, Mi wh, mi ew, and mi or. MITFs encoded by the mi, Mi wh, mi ew, and Mi or mutant alleles (mi-MITF, Mi wh-MITF, Mi ew-MITF, and Mi or-MITF, respectively) interfered with the DNA binding of wild-type MITF, TFE3, and another basic helix-loop-helix leucine zipper protein in vitro. Polyclonal antibody against MITF was produced and used for investigating the subcellular localization of mutant MITFs. Immunocytochemistry and immunoblotting revealed that more than 99% of wild-type MITF and Mi wh-MITF located in nuclei of transfected NIH 3T3 and 293T cells. In contrast, mi-MITF predominantly located in the cytoplasm of cells transfected with the corresponding plasmid. When the immunoglobulin G (IgG)-conjugated peptides representing a part of the DNA binding domain containing mi and Mi wh mutations were microinjected into the cytoplasm of NRK49F cells, wild-type peptide and Mi wh-type peptide-IgG conjugate localized in nuclei but mi-type peptide-IgG conjugate was detectable only in the cytoplasm. It was also demonstrated that the nuclear translocation potential of Mi or-MITF was normal but that Mi ew-MITF was impaired as well as mi-MITF. In cotransfection assay, a strong dominant negative effect of Mi wh-MITF against wild-type MITF-dependent transactivation system on tyrosinase promoter was observed, but mi-MITF had a small effect. However, by the conjugation of simian virus 40 large-T-antigen-derived nuclear localization signal to mi-MITF, the dominant negative effect was enhanced. Furthermore, we demonstrated that the interaction between wild-type MITF and mi-MITF occurred in the cytoplasm and that mi-MITF had an inhibitory effect on nuclear localization potential of wild-type MITF.
- Osaka University Japan
- Institute of Medical Sciences India
- Nara Women's University Japan
- National Institute of Neurological Disorders and Stroke United States
- Banaras Hindu University India
Cell Nucleus, Leucine Zippers, Microphthalmia-Associated Transcription Factor, Molecular Sequence Data, 3T3 Cells, Mice, Mutant Strains, DNA-Binding Proteins, Mice, Animals, Amino Acid Sequence, Transcription Factors
Cell Nucleus, Leucine Zippers, Microphthalmia-Associated Transcription Factor, Molecular Sequence Data, 3T3 Cells, Mice, Mutant Strains, DNA-Binding Proteins, Mice, Animals, Amino Acid Sequence, Transcription Factors
6 Research products, page 1 of 1
- 2001IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 1999IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).115 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
