Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BMC Molecular and Ce...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Molecular and Cell Biology
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Molecular and Cell Biology
Article . 2022
Data sources: DOAJ
versions View all 4 versions

MAPKAPK5-AS1 drives the progression of hepatocellular carcinoma via regulating miR-429/ZEB1 axis

Authors: Zongqing Peng; Xinhua Ouyang; Yexing Wang; Qiming Fan;

MAPKAPK5-AS1 drives the progression of hepatocellular carcinoma via regulating miR-429/ZEB1 axis

Abstract

Abstract Background Hepatocellular carcinoma (HCC) is a common malignancy. Long non-coding RNAs (lncRNAs) partake in the progression of HCC. However, the role of lncRNA MAPKAPK5-AS1 in the development of HCC has not been fully clarified. Methods RNA sequencing data and quantitative real-time polymerase chain reaction (qRT-PCR) were adopted to analyze MAPKAPK5-AS1, miR-429 and ZEB1 mRNA expressions in HCC tissues and cell lines. Western blot was used to detect ZEB1, E-cadherin and N-cadherin protein expressions. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Transwell and flow cytometry assays were adopted to analyze the effects of MAPKAPK5-AS1 on cell proliferation, migration, invasion and apoptosis. Besides, luciferase reporter assay was used to detect the targeting relationship between miR-429 and MAPKAPK5-AS1 or ZEB1 3’UTR. The xenograft tumor mouse models were used to explore the effect of MAPKAPK5-AS1 on lung metastasis of HCC cells. Results MAPKAPK5-AS1 and ZEB1 expressions were up-regulated in HCC tissues, and miR-429 expression is down-regulated in HCC tissues. MAPKAPK5-AS1 knockdown could significantly impede HCC cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT), as well as promote cell apoptosis. MAPKAPK5-AS1 overexpression could enhance L02 cell proliferation, migration, invasion and EMT, and inhibit cell apoptosis. MiR-429 was validated to be the target of MAPKAPK5-AS1, and miR-429 inhibitors could partially offset the effects of knocking down MAPKAPK5-AS1 on HCC cells. MAPKAPK5-AS1 could positively regulate ZEB1 expression through repressing miR-429. Moreover, fewer lung metastatic nodules were observed in the lung tissues of nude mice when the MAPKAPK5-AS1 was knocked down in HCC cells. Conclusion MAPKAPK5-AS1 can adsorb miR-429 to promote ZEB1 expression to participate in the development of HCC.

Related Organizations
Keywords

Carcinoma, Hepatocellular, QH573-671, Hepatocellular carcinoma, miR-429, Research, Liver Neoplasms, Intracellular Signaling Peptides and Proteins, Mice, Nude, Zinc Finger E-box-Binding Homeobox 1, Protein Serine-Threonine Kinases, MAPKAPK5-AS1, Mice, MicroRNAs, Cell Line, Tumor, ZEB1, Animals, Humans, RNA, Long Noncoding, Cytology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Green
gold