Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the Ameri...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of the American Chemical Society
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Bacterial AmpD at the Crossroads of Peptidoglycan Recycling and Manifestation of Antibiotic Resistance

Authors: Mijoon, Lee; Weilie, Zhang; Dusan, Hesek; Bruce C, Noll; Bill, Boggess; Shahriar, Mobashery;

Bacterial AmpD at the Crossroads of Peptidoglycan Recycling and Manifestation of Antibiotic Resistance

Abstract

The bacterial enzyme AmpD is an early catalyst in commitment of cell wall metabolites to the recycling events within the cytoplasm. The key internalized metabolite of cell wall recycling, beta-D-N-acetylglucosamine-(1-->4)-1,6-anhydro-beta-N-acetylmuramyl-L-Ala-gamma-D-Glu-meso-DAP-D-Ala-D-Ala (compound 1), is a poor substrate for AmpD. Two additional metabolites, 1,6-anhydro-N-acetylmuramyl-peptidyl derivatives 2a and 2c, served as substrates for AmpD with a k(cat)/K(m) of >10(4) M(-1) s(-1). The enzyme hydrolytically processes the lactyl amide bond of the 1,6-anhydro-N-acetylmuramyl moiety. The syntheses of these substrates and other ligands are reported herein, which made the characterization of the enzymic reaction possible. Furthermore, it is documented that the enzyme is specific for both the atypical peptide stem of the cell wall fragments and the presence of the sterically encumbered 1,6-anhydro-N-acetylmuramyl moiety; hence it is a peptidase with a unique function in bacterial physiology. The implications of the function of this catalyst for the entry into the cell wall recycling events and the reversal of induction of the production of beta-lactamase, an antibiotic resistance determinant, are discussed.

Related Organizations
Keywords

Models, Molecular, Molecular Structure, Drug Resistance, Microbial, Gene Expression Regulation, Bacterial, N-Acetylmuramoyl-L-alanine Amidase, Peptidoglycan, beta-Lactamases, Substrate Specificity, Citrobacter freundii, Bacterial Proteins, Escherichia coli, Cloning, Molecular

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 10%
Top 10%
Top 10%
bronze