Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Human Molecular Gene...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Human Molecular Genetics
Article . 2003 . Peer-reviewed
Data sources: Crossref
Human Molecular Genetics
Article . 2003 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Human BOULE gene rescues meiotic defects in infertile flies

Authors: Eugene Yujun, Xu; Douglas F, Lee; Ansgar, Klebes; Paul J, Turek; Tom B, Kornberg; Renee A, Reijo Pera;

Human BOULE gene rescues meiotic defects in infertile flies

Abstract

Defects in human germ cell development are common and yet little is known of genes required for germ cell development in men and women. The pathways that develop germ cells appear to be conserved broadly, at least in outline, in organisms as diverse as flies and humans beginning with allocation of cells to the germ cell lineage, migration of these cells to the fetal gonad, mitotic proliferation and meiosis of the germ cells, and maturation into sperm and eggs. In model organisms, a few thousand genes may be required for germ cell development including meiosis. To date, however, no genes that regulate critical steps of reproduction have been shown to be functionally conserved from flies to humans. This may be due in part to strong selective pressures that are thought to drive reproductive genes to high degrees of divergence. Here, we investigated the micro- and macro-evolution of the BOULE gene, a member of the human DAZ (deleted in azoospermia) gene family, within primates, within mammals and within metazoans. We report that sequence divergence of BOULE is unexpectedly low and that rapid evolution is not detectable. We extend the evolutionary analysis of BOULE to the level of phyla and show that a human BOULE transgene can advance meiosis in infertile boule mutant flies. This is the first demonstration that a human reproductive gene can rescue reproductive defects in a fly. These studies lend strong support to the idea that BOULE may encode a key conserved switch that regulates progression of germ cells through meiosis in men.

Related Organizations
Keywords

Male, Gene Expression Profiling, Gene Expression Regulation, Developmental, RNA-Binding Proteins, Genes, Insect, Deleted in Azoospermia 1 Protein, Spermatozoa, Animals, Genetically Modified, Evolution, Molecular, Meiosis, Fertility, Multigene Family, Animals, Drosophila Proteins, Humans, Drosophila, Female, Spermatogenesis, Phylogeny

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    115
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
115
Top 10%
Top 10%
Top 1%
bronze