Sequencing, Annotation, and Characterization of the Influenza Ferret Infectome
Sequencing, Annotation, and Characterization of the Influenza Ferret Infectome
ABSTRACT Ferrets have become an indispensable tool in the understanding of influenza virus virulence and pathogenesis. Furthermore, ferrets are the preferred preclinical model for influenza vaccine and therapeutic testing. Here we characterized the influenza infectome during the different stages of the infectious process in ferrets with and without prior specific immunity to influenza. RNA from lung tissue and lymph nodes from infected and naïve animals was subjected to next-generation sequencing, followed by de novo data assembly and annotation of the resulting sequences; this process generated a library comprising 13,202 ferret mRNAs. Gene expression profiles during pandemic H1N1 (pdmH1N1) influenza virus infection were analyzed by digital gene expression and solid support microarrays. As expected during primary infection, innate immune responses were triggered in the lung tissue; meanwhile, in the lymphoid tissue, genes encoding antigen presentation and maturation of effector cells of adaptive immunity increased dramatically. After 5 days postinfection, the innate immune gene expression was replaced by the adaptive immune response, which correlates with viral clearance. Reinfection with homologous pandemic influenza virus resulted in a diminished innate immune response, early adaptive immune gene regulation, and a reduction in clinical severity. The fully annotated ferret infectome will be a critical aid to the understanding of the molecular events that regulate disease severity and host-influenza virus interactions among seasonal, pandemic, and highly pathogenic avian influenzas.
- University of Pittsburgh United States
- University of Sassari Italy
- International Institute of Minnesota United States
- Toronto General Hospital Research Institute Canada
- Beijing Genomics Institute China (People's Republic of)
Time Factors, Molecular Sequence Data, Ferrets, Sequence Analysis, DNA, Disease Models, Animal, Influenza A Virus, H1N1 Subtype, Orthomyxoviridae Infections, Host-Pathogen Interactions, Animals, Lymph Nodes, Transcriptome, Lung
Time Factors, Molecular Sequence Data, Ferrets, Sequence Analysis, DNA, Disease Models, Animal, Influenza A Virus, H1N1 Subtype, Orthomyxoviridae Infections, Host-Pathogen Interactions, Animals, Lymph Nodes, Transcriptome, Lung
999 Research products, page 1 of 100
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).44 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
