Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Investiga...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article . 2002
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Investigative Dermatology
Article . 2002 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Melanosome Morphologies in Murine Models of Hermansky–Pudlak Syndrome Reflect Blocks in Organelle Development

Authors: Nguyen, T; Novak, E K; Kermani, M; Fluhr, J; Peters, L L; Swank, R T; Wei, M L;

Melanosome Morphologies in Murine Models of Hermansky–Pudlak Syndrome Reflect Blocks in Organelle Development

Abstract

Hermansky-Pudlak syndrome is an autosomal recessive disease characterized by pigment dilution and prolonged bleeding time. At least 15 mutant mouse strains have been classified as models of Hermansky-Pudlak syndrome. Some of the genes are implicated in intracellular vesicle trafficking: budding, targeting, and secretion. Many of the Hermansky-Pudlak syndrome genes remain uncharacterized and their functions are unknown. Clues to the functions of these genes can be found by analyzing the physiologic and cellular phenotypes. Here we have examined the morphology of the melanosomes in the skin of 10 of the mutant mouse Hermansky-Pudlak syndrome strains by transmission electron microscopy. We demonstrate that the morphologies reflect inhibition of organelle maturation or transfer. The Hermansky-Pudlak syndrome strains are classified into morphologic groups characterized by the step at which melanosome biogenesis or transfer to keratinocytes is inhibited, with the cappuccino strain observed to be blocked at the earliest step and gunmetal blocked at the latest step. We show that all Hermansky-Pudlak syndrome mutant strains except gunmetal have an increase in unpigmented or hypopigmented immature melanosomal forms, leading to the hypopigmented coat colors seen in these strains. In contrast, the hypopigmentation seen in the gunmetal strain is due to the retention of melanosomes in melanocytes, and inefficient transfer into keratinocytes.

Keywords

Keratinocytes, Hermanski-Pudlak-Syndrome, 610, Skin Pigmentation, Dermatology, Biochemistry, Mice, SUPPORT-U-S-GOVT-P-H-S, Animals, pigmentation, Mice-Inbred-C3H, Molecular Biology, Skin, Mice-Mutant-Strains, Skin-Pigmentation, Mice, Inbred C3H, Melanosomes, Mice-Inbred-C57BL, Cell Biology, SUPPORT-U-S-GOVT-NON-P-H-S, Mice, Mutant Strains, Microscopy-Electron, Mice, Inbred C57BL, melanocytes, Microscopy, Electron, Phenotype, Hermanski-Pudlak Syndrome, organelle biogenesis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Top 10%
Top 10%
Top 10%
hybrid