<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Tramtrack regulates different morphogenetic events duringDrosophilatracheal development

doi: 10.1242/dev.007328
pmid: 17881489
Tramtrack regulates different morphogenetic events duringDrosophilatracheal development
Tramtrack (Ttk) is a widely expressed transcription factor, the function of which has been analysed in different adult and embryonic tissues in Drosophila. So far, the described roles of Ttk have been mainly related to cell fate specification, cell proliferation and cell cycle regulation. Using the tracheal system of Drosophila as a morphogenetic model, we have undertaken a detailed analysis of Ttk function. Ttk is autonomously and non-autonomously required during embryonic tracheal formation. Remarkably, besides a role in the specification of different tracheal cell identities, we have found that Ttk is directly involved and required for different cellular responses and morphogenetic events. In particular, Ttk appears to be a new positive regulator of tracheal cell intercalation. Analysis of this process in ttk mutants has unveiled cell shape changes as a key requirement for intercalation and has identified Ttk as a novel regulator of its progression. Moreover, we define Ttk as the first identified regulator of intracellular lumen formation and show that it is autonomously involved in the control of tracheal tube size by regulating septate junction activity and cuticle formation. In summary, the involvement of Ttk in different steps of tube morphogenesis identifies it as a key player in tracheal development.
Cell Fusion, Repressor Proteins, Drosophila melanogaster, Embryo, Nonmammalian, Receptors, Notch, Morphogenesis, Animals, Drosophila Proteins, Adherens Junctions, Cell Shape
Cell Fusion, Repressor Proteins, Drosophila melanogaster, Embryo, Nonmammalian, Receptors, Notch, Morphogenesis, Animals, Drosophila Proteins, Adherens Junctions, Cell Shape
76 Research products, page 1 of 8
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).29 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%