Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The FASEB Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The FASEB Journal
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The FASEB Journal
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

The deacetylase HDAC4 controls myocyte enhancing factor‐2‐dependent structural gene expression in response to neural activity

Authors: Cohen, T J; Barrientos, T; Hartman, Z C; Garvey, S M; Cox, G A; Yao, T P;

The deacetylase HDAC4 controls myocyte enhancing factor‐2‐dependent structural gene expression in response to neural activity

Abstract

Histone deacetylase 4 (HDAC4) binds and inhibits activation of the critical muscle transcription factor myocyte enhancer factor-2 (MEF2). However, the physiological significance of the HDAC4-MEF2 complex in skeletal muscle has not been established. Here we show that in skeletal muscle, HDAC4 is a critical modulator of MEF2-dependent structural and contractile gene expression in response to neural activity. We present evidence that loss of neural input leads to concomitant nuclear accumulation of HDAC4 and transcriptional reduction of MEF2-regulated gene expression. Cell-based assays show that HDAC4 represses structural gene expression via direct binding to AT-rich MEF2 response elements. Notably, using both surgical denervation and the neuromuscular disease amyotrophic lateral sclerosis (ALS) model, we found that elevated levels of HDAC4 are required for efficient repression of MEF2-dependent structural gene expression, indicating a link between the pathological induction of HDAC4 and subsequent MEF2 target gene suppression. Supporting this supposition, we show that ectopic expression of HDAC4 in muscle fibers is sufficient to induce muscle damage in mice. Our study identifies HDAC4 as an activity-dependent regulator of MEF2 function and suggests that activation of HDAC4 in response to chronically reduced neural activity suppresses MEF2-dependent gene expression and contributes to progressive muscle dysfunction observed in neuromuscular diseases.

Country
United States
Related Organizations
Keywords

Neurons, 570, Muscle Cells, MEF2 Transcription Factors, Mice-Inbred-C57BL, Muscle-Cells, 610, Cell-Line, Histone Deacetylases, Cell Line, Mice, Inbred C57BL, Repressor Proteins, Mice, Gene Expression Regulation, Myogenic Regulatory Factors, Mutation, Animals, Myogenic-Regulatory-Factors, Gene-Expression-Regulation, Histone-Deacetylases, Repressor-Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    77
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
77
Top 10%
Top 10%
Top 10%
bronze