Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genes & Genetic ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genes & Genetic Systems
Article . 2003 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

The Drosophila misfire gene has an essential role in sperm activation during fertilization.

Authors: Takashi, Ohsako; Kazuyuki, Hirai; Masa-Toshi, Yamamoto;

The Drosophila misfire gene has an essential role in sperm activation during fertilization.

Abstract

The male sterile mutation, misfire (mfr), of Drosophila melanogaster is a novel paternal effect, fertilization defective mutant that effects sperm head decondensation. mfr sperm were motile, appeared normal morphologically and were transferred to the female during copulation. However, less than 0.1% of eggs laid by females mated to mfr males hatched. Although mfr sperm entered eggs at a high frequency (93%), 99% of the inseminated eggs did not initiate the first nuclear division. Unlike wild type fertilizing sperm, the position and shape of mfr sperm tails within the egg were not constant, but varied in a seemingly random manner. The heads of inseminating mutant sperm were always located near the surface of eggs just underlying the egg plasma membrane, and maintained their needle-like shape indicating the failure of nuclear decondensation. Further observations revealed that plasma membrane of inseminating sperm appeared intact, including the head region. These phenotypes were equivalent to those of sneaky (snky), another fertilization defective male sterile mutation. Our observations strongly suggest that mfr mutant males are sterile because their inseminating sperm fail to form a male pronucleus due to the inability of the sperm to properly respond to egg factors responsible for the breakdown of the plasma membrane. Although mfr and snky mutations were phenotypically identical, they mapped to cytologically distinct genetic loci and no genetic interactions were observed, suggesting that at least two distinct paternal gene products are involved in the early stages of pronuclear formation.

Related Organizations
Keywords

Cell Nucleus, Male, Sperm-Ovum Interactions, Cell Membrane, Mitosis, Genes, Insect, Spermatozoa, Drosophila melanogaster, Fertility, Phenotype, Fertilization, Animals, Sperm Head, Female, Infertility, Male

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Average
gold