A new crystal structure and small-angle X-ray scattering analysis of the homodimer of human SFPQ
A new crystal structure and small-angle X-ray scattering analysis of the homodimer of human SFPQ
Splicing factor proline/glutamine-rich (SFPQ) is an essential RNA-binding protein that is implicated in many aspects of nuclear function. The structures of SFPQ and two paralogs, non-POU domain-containing octamer-binding protein and paraspeckle component 1, from theDrosophilabehavior human splicing protein family have previously been characterized. The unusual arrangement of the four domains, two RNA-recognition motifs (RRMs), a conserved region termed the NonA/paraspeckle (NOPS) domain and a C-terminal coiled coil, in the intertwined dimer provides a potentially unique RNA-binding surface. However, the molecular details of how the four RRMs in the dimeric SFPQ interact with RNA remain to be characterized. Here, a new crystal structure of the dimerization domain of human SFPQ in theC-centered orthorhombic space groupC2221with one monomer in the asymmetric unit is presented. Comparison of the new crystal structure with the previously reported structure of SFPQ and analysis of the solution small-angle X-scattering data revealed subtle domain movements in the dimerization domain of SFPQ, supporting the concept of multiple conformations of SFPQ in equilibrium in solution. The domain movement of RRM1, in particular, may reflect the complexity of the RNA substrates of SFPQ. Taken together, the crystal and solution structure analyses provide a molecular basis for further investigation into the plasticity of nucleic acid binding by SFPQ in the absence of the structure in complex with its cognate RNA-binding partners.
- La Trobe University Australia
Models, Molecular, Protein Conformation, Scattering, Small Angle, Humans, RNA, Protein Multimerization, Crystallography, X-Ray, PTB-Associated Splicing Factor
Models, Molecular, Protein Conformation, Scattering, Small Angle, Humans, RNA, Protein Multimerization, Crystallography, X-Ray, PTB-Associated Splicing Factor
3 Research products, page 1 of 1
- 2014IsRelatedTo
- 2018IsSupplementTo
- 2018IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
