Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular and Cellular Cardiology
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Gain-of-function mutations in the calcium channel CACNA1C (Cav1.2) cause non-syndromic long-QT but not Timothy syndrome

Authors: Konstantin, Wemhöner; Corinna, Friedrich; Birgit, Stallmeyer; Alison J, Coffey; Andrew, Grace; Sven, Zumhagen; Guiscard, Seebohm; +5 Authors

Gain-of-function mutations in the calcium channel CACNA1C (Cav1.2) cause non-syndromic long-QT but not Timothy syndrome

Abstract

Gain-of-function mutations in CACNA1C, encoding the L-type Ca(2+) channel Cav1.2, cause Timothy syndrome (TS), a multi-systemic disorder with dysmorphic features, long-QT syndrome (LQTS) and autism spectrum disorders. TS patients have heterozygous mutations (G402S and G406R) located in the alternatively spliced exon 8, causing a gain-of-function by reduced voltage-dependence of inactivation. Screening 540 unrelated patients with non-syndromic forms of LQTS, we identified six functional relevant CACNA1C mutations in different regions of the channel. All these mutations caused a gain-of-function combining different mechanisms, including changes in current amplitude, rate of inactivation and voltage-dependence of activation or inactivation, similar as in TS. Computer simulations support the theory that the novel CACNA1C mutations prolong action potential duration. We conclude that genotype-negative LQTS patients should be investigated for mutations in CACNA1C, as a gain-of-function in Cav1.2 is likely to cause LQTS and only specific and rare mutations, i.e. in exon 8, cause the multi-systemic TS.

Keywords

Adult, Male, Adolescent, Calcium Channels, L-Type, DNA Mutational Analysis, Action Potentials, Gene Expression, Cell Line, Electrocardiography, Humans, Calcium Signaling, Autistic Disorder, Child, Genetic Variation, Infant, Long QT Syndrome, Amino Acid Substitution, Child, Preschool, Mutation, Female

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    83
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
83
Top 1%
Top 10%
Top 10%