Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publikationenserver ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Neuroscience
Article . 2008 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 3 versions

Activity-dependent site-specific changes of glutamate receptor composition in vivo

Authors: Manfred Heckmann; Manfred Heckmann; Stefan Hallermann; Stefan Hallermann; Andreas Frölich; Andreas Schmid; Sara Mertel; +10 Authors

Activity-dependent site-specific changes of glutamate receptor composition in vivo

Abstract

The subunit composition of postsynaptic non-NMDA-type glutamate receptors (GluRs) determines the function and trafficking of the receptor. Changes in GluR composition have been implicated in the homeostasis of neuronal excitability and synaptic plasticity underlying learning. Here, we imaged GluRs in vivo during the formation of new postsynaptic densities (PSDs) at Drosophila neuromuscular junctions coexpressing GluRIIA and GluRIIB subunits. GluR composition was independently regulated at directly neighboring PSDs on a submicron scale. Immature PSDs typically had large amounts of GluRIIA and small amounts of GluRIIB. During subsequent PSD maturation, however, the GluRIIA/GluRIIB composition changed and became more balanced. Reducing presynaptic glutamate release increased GluRIIA, but decreased GluRIIB incorporation. Moreover, the maturation of GluR composition correlated in a site-specific manner with the level of Bruchpilot, an active zone protein that is essential for mature glutamate release. Thus, we show that an activity-dependent, site-specific control of GluR composition can contribute to match pre- and postsynaptic assembly.

Keywords

Patch-Clamp Techniques, Time Factors, Green Fluorescent Proteins, Neuromuscular Junction, Excitatory Postsynaptic Potentials, Glutamic Acid, Models, Biological, Animals, Genetically Modified, Protein Transport, Gene Expression Regulation, Mutation, Animals, Drosophila Proteins, Computer Simulation, Drosophila, Receptors, AMPA, Fluorescence Recovery After Photobleaching

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    168
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
168
Top 10%
Top 10%
Top 1%
Green