Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Evidence-Based Menta...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Evidence-Based Mental Health
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Evidence-Based Mental Health
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions

Prediction of treatment dosage and duration from free-text prescriptions: an application to ADHD medications in the Swedish prescribed drug register

Authors: Le Zhang; Tyra Lagerberg; Qi Chen; Laura Ghirardi; Brian M D'Onofrio; Henrik Larsson; Alexander Viktorin; +1 Authors

Prediction of treatment dosage and duration from free-text prescriptions: an application to ADHD medications in the Swedish prescribed drug register

Abstract

Background Accurate estimation of daily dosage and duration of medication use is essential to pharmacoepidemiological studies using electronic healthcare databases. However, such information is not directly available in many prescription databases, including the Swedish Prescribed Drug Register. Objective To develop and validate an algorithm for predicting prescribed daily dosage and treatment duration from free-text prescriptions, and apply the algorithm to ADHD medication prescriptions. Methods We developed an algorithm to predict daily dosage from free-text prescriptions using 8000 ADHD medication prescriptions as the training sample, and estimated treatment periods while taking into account several features including titration, stockpiling and non-perfect adherence. The algorithm was implemented to all ADHD medication prescriptions from the Swedish Prescribed Drug Register in 2013. A validation sample of 1000 ADHD medication prescriptions, independent of the training sample, was used to assess the accuracy for predicted daily dosage. Findings In the validation sample, the overall accuracy for predicting daily dosage was 96.8%. Specifically, the natural language processing model (NLP1 and NLP2) have an accuracy of 99.2% and 96.3%, respectively. In an application to ADHD medication prescriptions in 2013, young adult ADHD medication users had the highest probability of discontinuing treatments as compared with other age groups. The daily dose of methylphenidate use increased with age substantially. Conclusions The algorithm provides a flexible approach to estimate prescribed daily dosage and treatment duration from free-text prescriptions using register data. The algorithm showed a good performance for predicting daily dosage in external validation. Clinical implications The structured output of the algorithm could serve as basis for future pharmacoepidemiological studies evaluating utilization, effectiveness, and safety of medication use, which would facilitate evidence-based treatment decision-making.

Keywords

Sweden, Young Adult, Attention Deficit Disorder with Hyperactivity, Methylphenidate, Humans, Drug Prescriptions, Digital Mental Health

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Top 10%
Top 10%
Green
hybrid