Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2003
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2003 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Gonadotropin-releasing hormone (gnrh) cells arise from cranial neural crest and adenohypophyseal regions of the neural plate in the zebrafish, danio rerio

Authors: Whitlock, K.E; Wolf, C.D; Boyce, M.L;

Gonadotropin-releasing hormone (gnrh) cells arise from cranial neural crest and adenohypophyseal regions of the neural plate in the zebrafish, danio rerio

Abstract

The olfactory placodes generate the primary sensory neurons of the olfactory sensory system. Additionally, the olfactory placodes have been proposed to generate a class of neuroendocrine cells containing gonadotropin-releasing hormone (GnRH). GnRH is a multifunctional decapeptide essential for the development of secondary sex characteristics in vertebrates as well as a neuromodulator within the central nervous system. Here, we show that endocrine and neuromodulatory GnRH cells arise from two separate, nonolfactory regions in the developing neural plate. Specifically, the neuromodulatory GnRH cells of the terminal nerve arise from the cranial neural crest, and the endocrine GnRH cells of the hypothalamus arise from the adenohypophyseal region of the developing anterior neural plate. Our findings are consistent with cell types generated by the adenohypophysis, a source of endocrine tissue in vertebrate animals, and by neural crest, a source of cells contributing to the cranial nerves. The adenohypophysis arises from a region of the anterior neural plate flanked by the olfactory placode fields at early stages of development, and premigratory cranial neural crest lies adjacent to the caudal edge of the olfactory placode domain [Development 127 (2000), 3645]. Thus, the GnRH cells arise from tissue closely associated with the developing olfactory placode, and their different developmental origins reflect their different functional roles in the adult animal.

Related Organizations
Keywords

Fate map, Zinc Finger Protein Gli2, dlx3, Gonadotropin-Releasing Hormone, Lineage, Pituitary Gland, Anterior, Animals, Olfactory placode, Molecular Biology, Zebrafish, Staining and Labeling, Kallmann syndrome, Cell Biology, Carbocyanines, Zebrafish Proteins, Immunohistochemistry, Pituitary, Embryo, Neural Crest, Mutation, Head, DiI, Developmental Biology, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    114
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
114
Top 10%
Top 10%
Top 1%
hybrid