Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Drug Metabolism and ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Drug Metabolism and Disposition
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

FUNCTIONAL CHARACTERIZATION OF HUMAN MONOCARBOXYLATE TRANSPORTER 6 (SLC16A5)

Authors: Yuichi Murakami; Masayuki Ohbayashi; Yasuna Kobayashi; Yasufumi Sawada; Toshinori Yamamoto; Noriko Kohyama; Hisakazu Ohtani;

FUNCTIONAL CHARACTERIZATION OF HUMAN MONOCARBOXYLATE TRANSPORTER 6 (SLC16A5)

Abstract

Human monocarboxylate transporter 6 (MCT6) has recently been isolated, and its tissue distribution has been established at the mRNA level, but its functional properties remain unknown. The aim of this study is to investigate the transport properties of MCT6. When expressed in Xenopus laevis oocytes, MCT6 transported [3H]bumetanide in a pH- and membrane potential-sensitive but not proton gradient-dependent manner, with the K(t) value of 84 microM. Furthermore, MCT6 transported various drugs such as probenecid and nateglinide. Neither [14C]L-lactic acid nor [3H]L-tryptophan, typical substrates of other MCT isoforms, was transported by MCT6. Four loop diuretics, i.e., furosemide, piretanide, azosemide, and torasemide, thiazides, probenecid, glibenclamide, and nateglinide inhibited the MCT6-mediated uptake of [3H]bumetanide. In contrast, short-chain carboxylic acids, such as L-lactic acid and succinic acid did not inhibit the MCT6-mediated uptake of bumetanide. These results suggest that the substrate specificity of MCT6 is distinct from those of other MCTs. Bumetanide would be a good tool for investigating the functional properties of MCT6. It is probable that MCT6 is involved in the disposition of various drugs, including bumetanide.

Keywords

Monocarboxylic Acid Transporters, Xenopus, Animals, Humans, Hydrogen-Ion Concentration, Bumetanide, Substrate Specificity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    74
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
74
Top 10%
Top 10%
Top 10%