Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Human Molecular Genetics
Article . 2015 . Peer-reviewed
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions

DLX4is associated with orofacial clefting and abnormal jaw development

Authors: Wu, Di; Mandal, Shyamali; Choi, Alex; Anderson, August; Prochazkova, Michaela; Perry, Hazel; Gil-Da-Silva-Lopes, Vera L; +7 Authors

DLX4is associated with orofacial clefting and abnormal jaw development

Abstract

Cleft lip and/or palate (CL/P) are common structural birth defects in humans. We used exome sequencing to study a patient with bilateral CL/P and identified a single nucleotide deletion in the patient and her similarly affected son—c.546_546delG, predicting p.Gln183Argfs*57 in the Distal-less 4 (DLX4) gene. The sequence variant was absent from databases, predicted to be deleterious and was verified by Sanger sequencing. In mammals, there are three Dlx homeobox clusters with closely located gene pairs (Dlx1/Dlx2, Dlx3/Dlx4, Dlx5/Dlx6). In situ hybridization showed that Dlx4 was expressed in the mesenchyme of the murine palatal shelves at E12.5, prior to palate closure. Wild-type human DLX4, but not mutant DLX4_c.546delG, could activate two murine Dlx conserved regulatory elements, implying that the mutation caused haploinsufficiency. We showed that reduced DLX4 expression after short interfering RNA treatment in a human cell line resulted in significant up-regulation of DLX3, DLX5 and DLX6, with reduced expression of DLX2 and significant up-regulation of BMP4, although the increased BMP4 expression was demonstrated only in HeLa cells. We used antisense morpholino oligonucleotides to target the orthologous Danio rerio gene, dlx4b, and found reduced cranial size and abnormal cartilaginous elements. We sequenced DLX4 in 155 patients with non-syndromic CL/P and CP, but observed no sequence variants. From the published literature, Dlx1/Dlx2 double homozygous null mice and Dlx5 homozygous null mice both have clefts of the secondary palate. This first finding of a DLX4 mutation in a family with CL/P establishes DLX4 as a potential cause of human clefts.

Related Organizations
Keywords

570, Knockout, Cleft Lip, Bioinformatics and Computational Biology, 610, Bone Morphogenetic Protein 4, Medical and Health Sciences, Morpholinos, Mesoderm, Mice, Jaw Abnormalities, Genetics, 2.1 Biological and endogenous factors, Animals, Humans, Developmental, Exome, Dental/Oral and Craniofacial Disease, Zebrafish, Pediatric, Genetics & Heredity, Homeodomain Proteins, Mice, Knockout, Brain, Gene Expression Regulation, Developmental, High-Throughput Nucleotide Sequencing, Biological Sciences, Zebrafish Proteins, Cleft Palate, Gene Expression Regulation, Hela Cells, Congenital Structural Anomalies, Biotechnology, HeLa Cells, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%
Green
bronze