Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genome Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genome Biology
Article . 2007 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genome Biology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genome Biology
Article . 2008
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2007
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions

Violating the splicing rules: TG dinucleotides function as alternative 3' splice sites in U2-dependent introns

Authors: Szafranski, Karol; Schindler, Stefanie; Taudien, Stefan; Hiller, Michael Thomas; Huse, Klaus; Jahn, Niels; Schreiber, Stefan; +2 Authors

Violating the splicing rules: TG dinucleotides function as alternative 3' splice sites in U2-dependent introns

Abstract

Abstract Background Despite some degeneracy of sequence signals that govern splicing of eukaryotic pre-mRNAs, it is an accepted rule that U2-dependent introns exhibit the 3' terminal dinucleotide AG. Intrigued by anecdotal evidence for functional non-AG 3' splice sites, we carried out a human genome-wide screen. Results We identified TG dinucleotides functioning as alternative 3' splice sites in 36 human genes. The TG-derived splice variants were experimentally validated with a success rate of 92%. Interestingly, ratios of alternative splice variants are tissue-specific for several introns. TG splice sites and their flanking intron sequences are substantially conserved between orthologous vertebrate genes, even between human and frog, indicating functional relevance. Remarkably, TG splice sites are exclusively found as alternative 3' splice sites, never as the sole 3' splice site for an intron, and we observed a distance constraint for TG-AG splice site tandems. Conclusion Since TGs splice sites are exclusively found as alternative 3' splice sites, the U2 spliceosome apparently accomplishes perfect specificity for 3' AGs at an early splicing step, but may choose 3' TGs during later steps. Given the tiny fraction of TG 3' splice sites compared to the vast amount of non-viable TGs, cis-acting sequence signals must significantly contribute to splice site definition. Thus, we consider TG-AG 3' splice site tandems as promising subjects for studies on the mechanisms of 3' splice site selection.

Country
Germany
Related Organizations
Keywords

Base Sequence, Genome, Human, Research, Molecular Sequence Data, Guanine Nucleotides, Introns, RNA, Small Nuclear, Spliceosomes, Humans, Thymine Nucleotides, RNA Splice Sites

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Average
Top 10%
Top 10%
Green
gold