Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science
Article
Data sources: UnpayWall
Science
Article . 2013 . Peer-reviewed
Data sources: Crossref
Science
Article . 2013
versions View all 2 versions

Elongation Factor G Bound to the Ribosome in an Intermediate State of Translocation

Authors: David S, Tourigny; Israel S, Fernández; Ann C, Kelley; V, Ramakrishnan;

Elongation Factor G Bound to the Ribosome in an Intermediate State of Translocation

Abstract

Revealed in Translation The ribosome, with the help of transfer RNAs (tRNAs), converts the triple genetic code in messenger RNA (mRNA) into protein. Upon decoding of a codon, the mRNA and associated tRNAs must be moved through the ribosome, so that the next codon can be read, with a new charged tRNA taken in at the A (aminoacyl-tRNA) site, the newly extended peptidyl-tRNA moved into the P (peptidyl-tRNA) site, and the deacylated tRNA removed from the exit site in the ribosome (see the Perspective by Rodnina ). Crystal structures from Tourigny et al. (p. 1235490 ), Pulk and Cate (p. 1235970 ), and Zhou et al. (p. 1236086 ), variously capture the prokaryotic ribosome during this translocation phase, revealing the hybrid states of the tRNAs and the substantial motions of the 30S ribosomal subunit during the process, the role of elongation factor G, and suggest how the direction and reading frame of the mRNA is maintained.

Related Organizations
Keywords

RNA, Transfer, Catalytic Domain, Protein Biosynthesis, Thermus thermophilus, Molecular Sequence Data, Amino Acid Sequence, Guanosine Triphosphate, RNA, Messenger, Crystallography, X-Ray, Peptide Elongation Factor G, Ribosomes, Protein Structure, Tertiary

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    193
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
193
Top 1%
Top 10%
Top 1%
bronze