Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2004 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Physical Association of Eukaryotic Initiation Factor (eIF) 5 Carboxyl-terminal Domain with the Lysine-rich eIF2β Segment Strongly Enhances Its Binding to eIF3

Authors: Chingakham Ranjit, Singh; Yasufumi, Yamamoto; Katsura, Asano;

Physical Association of Eukaryotic Initiation Factor (eIF) 5 Carboxyl-terminal Domain with the Lysine-rich eIF2β Segment Strongly Enhances Its Binding to eIF3

Abstract

The carboxyl-terminal domain (CTD) of eukaryotic initiation factor (eIF) 5 interacts with eIF1, eIF2beta, and eIF3c, thereby mediating formation of the multifactor complex (MFC), an important intermediate for the 43 S preinitiation complex assembly. Here we demonstrate in vitro formation of a nearly stoichiometric quaternary complex containing eIF1 and the minimal segments of eIF2beta, eIF3c, and eIF5. In vivo, overexpression of eIF2 and tRNA(Met)(i) suppresses the temperature-sensitive phenotype of tif5-7A altering eIF5-CTD by increasing interaction of the mutant eIF5 with eIF2 by mass action and restoring its defective interaction with eIF3. By contrast, overexpression of eIF1 exacerbated the tif5-7A phenotype because eIF1 forms unusual inhibitory complexes with a hyperstoichiometric amount of eIF1. Formation of such complexes leads to increased GCN4 translation, independent of eIF2 phosphorylation (general control derepressed or Gcd(-) phenotype). We also provide biochemical evidence indicating that the association of eIF5-CTD with eIF2beta strongly enhances its binding to eIF3c. Our results suggest strongly that MFC formation is an ordered event involving specific enhancement of eIF5-CTD binding to eIF3 on its binding to eIF2beta. We propose that the primary function of eIF5-CTD is to serve as an assembly guide by rapidly promoting stoichiometric MFC assembly with the aid of eIF2 while excluding formation of nonfunctional complexes.

Related Organizations
Keywords

Eukaryotic Initiation Factor-3, Lysine, Protein Biosynthesis, Eukaryotic Initiation Factor-2, Mutation, Saccharomyces cerevisiae, Eukaryotic Initiation Factor-5, Precipitin Tests, Protein Binding, Protein Structure, Tertiary

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Average
Top 10%
Top 10%
gold