Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1995 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Erythropoietin-induced Transcription at the Murine βmaj-Globin Promoter

Authors: Debra J. Taxman; Don M. Wojchowski;

Erythropoietin-induced Transcription at the Murine βmaj-Globin Promoter

Abstract

Using J2E cells and the murine beta maj-globin promoter as a model, we have performed the first direct analyses of erythropoietin (EPO)-activated transcription from defined templates. The -346 to +26 beta maj promoter was shown to comprise a target for maximal activation. This included a positive role for a -346 to -107-base pair (bp) domain in J2E cells, but not in F-MEL cells. Mutagenesis of a -215-bp AGATAA element within this domain showed that this effect did not require GATA-1 binding. In contrast, a critical role for GATA-1 at a -60-bp (G)GATAG element was defined by mutagenesis (GGg-TAG and TGATAG), complementation with a synthetic TGATAA element, and the demonstrated specific binding of GATA-1. Proximal CCAAT (-75) and CACCC (-90) elements also were shown to contribute to transcriptional activation in J2E cells, yet exerted quantitatively distinct effects in the F-MEL system. Based on these results, minimal [TGATAA]4-TATA and TGATAA-CACCC-TATA promoters were constructed and assayed in each system. Remarkably, the [TGATAA]4-TATA promoter, but not the TGATAA-CACCC-TATA promoter, was induced efficiently by EPO in J2E cells, whereas the TGATAA-CACCC-TATA promoter was highly induced by Me2SO in F-MEL cells. These findings suggest that mechanisms of EPO-induced transcription in J2E cells involve GATA-1 and differ from chemically activated mechanisms studied previously in F-MEL cells. Globin induction in J2E cells was not associated with effects of EPO on levels or nuclear translocation of GATA-1. However, hemoglobinization was induced by okadaic acid, 8-Br-cAMP, and forskolin, a finding consistent with induction mechanisms that may involve modulated serine/threonine phosphorylation.

Related Organizations
Keywords

Base Sequence, Transcription, Genetic, Colforsin, Molecular Sequence Data, Cell Line, Globins, DNA-Binding Proteins, Mice, Ethers, Cyclic, Okadaic Acid, Animals, Erythroid-Specific DNA-Binding Factors, GATA1 Transcription Factor, Promoter Regions, Genetic, Erythropoietin, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Average
Top 10%
Top 10%
gold