Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AJP Lung Cellular an...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AJP Lung Cellular and Molecular Physiology
Article . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Upregulation of Oct-4 isoforms in pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension

Authors: Amy L, Firth; Weijuan, Yao; Carmelle V, Remillard; Aiko, Ogawa; Jason X-J, Yuan;

Upregulation of Oct-4 isoforms in pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension

Abstract

Oct-4 is a transcription factor considered to be one of the defining pluripotency markers in embryonic stem cells. Its expression has also been demonstrated in adult stem cells, tumorigenic cells, and, most recently and controversially, in somatic cells. Oct-4 pseudogenes also contribute to carcinogenesis. Oct-4 may be involved in the excessive proliferation of pulmonary arterial smooth muscle cells (PASMC) in patients with idiopathic pulmonary arterial hypertension (IPAH), contributing to the pathogenesis of IPAH. In this study, we show that Oct-4 isoforms are upregulated in IPAH-PASMC. Human embryonic stem cells (H9 line) and human PASMC from normotensive subjects were used throughout the investigation as positive and negative controls. In addition to significant upregulation of Oct-4 in a population of IPAH-PASMC, HIF-2α, a hypoxia-inducible transcription factor that has been shown to bind to the Oct-4 promoter and induces its expression and transcriptional activity, was also increased. Interestingly, a substantial upregulation of Oct-4 isoforms and HIF-2α was also observed in normal PASMC exposed to chronic hypoxia. In conclusion, the data suggest that both Oct-4 isoforms are upregulated and potentially have a significant role in the development of vascular abnormalities associated with the pathogenesis of IPAH and in pulmonary hypertension triggered by chronic hypoxia.

Keywords

Pluripotent Stem Cells, Base Sequence, Hypertension, Pulmonary, Molecular Sequence Data, Myocytes, Smooth Muscle, Down-Regulation, Pulmonary Artery, Cell Hypoxia, Up-Regulation, Basic Helix-Loop-Helix Transcription Factors, Humans, Protein Isoforms, RNA, Messenger, Octamer Transcription Factor-3, Pseudogenes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Average
bronze