Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 1994 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 1995
versions View all 2 versions

Ypt1p implicated in v-SNARE activation

Authors: J P, Lian; S, Stone; Y, Jiang; P, Lyons; S, Ferro-Novick;
Abstract

Synaptobrevin-like membrane proteins that reside on transport vesicles, called the vesicle SNARE (v-SNARE), play a key role in ensuring that a vesicle targets and fuses with its correct acceptor compartment. Here we show that Bos1p, the v-SNARE of yeast endoplasmic reticulum-to-Golgi transport vesicles, pairs with another integral membrane protein of similar topology (Sec22p) on vesicles. This pairing, which appears to require functional Ypt1p (Rab in mammalian cells), may aid the activity of Bos1p on this compartment. These findings suggest that Rabs regulate the specificity of membrane fusion by selectively activating the v-SNARE on carrier vesicles. Because the v-SNARE resides on more than one membrane, such a regulated activation step may be necessary to prevent the premature fusion of donor and acceptor compartments.

Related Organizations
Keywords

Organelles, Saccharomyces cerevisiae Proteins, Genes, Fungal, Vesicular Transport Proteins, Golgi Apparatus, Membrane Proteins, Biological Transport, Intracellular Membranes, Saccharomyces cerevisiae, Qb-SNARE Proteins, Endoplasmic Reticulum, Membrane Fusion, Fungal Proteins, GTP-Binding Proteins, rab GTP-Binding Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    194
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
194
Top 10%
Top 1%
Top 1%