Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of Membr...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Membrane Biology
Article . 2004 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions

Molecular Mechanisms of Electrogenic Sodium Bicarbonate Cotransport: Structural and Equilibrium Thermodynamic Considerations

Authors: Kurtz, I.; Petrasek, D.; Tatishchev, S.;

Molecular Mechanisms of Electrogenic Sodium Bicarbonate Cotransport: Structural and Equilibrium Thermodynamic Considerations

Abstract

The electrogenic Na(+)-HCO(3)(-) cotransporters play an essential role in regulating intracellular pH and extracellular acid-base homeostasis. Of the known members of the bicarbonate transporter superfamily (BTS), NBC1 and NBC4 proteins have been shown to be electrogenic. The electrogenic nature of these transporters results from the unequal coupling of anionic and cationic fluxes during each transport cycle. This unique property distinguishes NBC1 and NBC4 proteins from other sodium bicarbonate cotransporters and members of the bicarbonate transporter superfamily that are known to be electroneutral. Structure-function studies have played an essential role in revealing the basis for the modulation of the coupling ratio of NBC1 proteins. In addition, the recent transmembrane topographic analysis of pNBC1 has shed light on the potential structural determinants that are responsible for ion permeation through the cotransporter. The experimentally difficult problem of determining the nature of anionic species being transported by these proteins (HCO(3)(-) versus CO(3)(2-)) is analyzed using a theoretical equilibrium thermodynamics approach. Finally, our current understanding of the molecular mechanisms responsible for the regulation of ion coupling and flux through electrogenic sodium bicarbonate cotransporters is reviewed in detail.

Keywords

Acid-Base Equilibrium, Sequence Homology, Amino Acid, Sodium-Bicarbonate Symporters, Xenopus, Molecular Sequence Data, Sodium bicarbonate, Transport, 610, Gene Expression, Biological Transport, 530, Rats, Structure-Activity Relationship, Sodium Bicarbonate, Animals, Humans, Protein Isoforms, Thermodynamics, Amino Acid Sequence, Acid-base, Sequence Alignment, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Average
Top 10%
Top 10%