Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Insect Molecular Bio...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Insect Molecular Biology
Article . 1995 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Drosophila melanogaster mitochondrial DNA: completion of the nucleotide sequence and evolutionary comparisons

Authors: D L, Lewis; C L, Farr; L S, Kaguni;

Drosophila melanogaster mitochondrial DNA: completion of the nucleotide sequence and evolutionary comparisons

Abstract

Abstract The nucleotide sequence of the regions flanking the A + T region of Drosophila melanogaster mitochondrial DNA (mtDNA) has been determined. Included are the genes encoding the transfer RNAs for valine, isoleucine, glutamine and methionine, the small ribosomal RNA and the 5'‐coding sequences of the large ribosomal RNA and NADH dehydrogenase subunit II. This completes the nucleotide sequence of the D. melanogaster mitochondrial genome. The circular mtDNA of D. melanogaster varies in size among different populations largely due to length differences in the control region (Fauron & Wolstenholme, 1976; Fauron & Wolstenholme, 1980a, b); the mtDNA region we have sequenced, combined with those sequenced by others, yields a composite genome that is 19,517 bp in length as compared to 16,019 bp for the mtDNA of D. yakuba. D. melanogaster mtDNA exhibits an extreme bias in base composition; it comprises 82.2% deoxyadenylate and thymidylate residues as compared to 78.6% in D. yakuba mtDNA. All genes encoded in the mtDNA of both species are in identical locations and orientations. Nucleotide substitution analysis reveals that tRNA and rRNA genes evolve at less than half the rate of protein coding genes.

Keywords

Genome, Base Sequence, Molecular Sequence Data, Genes, Insect, NADH Dehydrogenase, Biological Evolution, DNA, Mitochondrial, Drosophila melanogaster, RNA, Transfer, RNA, Ribosomal, RNA, Ribosomal, 16S, Sequence Homology, Nucleic Acid, Animals, Nucleic Acid Conformation, Drosophila, Amino Acid Sequence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    167
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
167
Top 1%
Top 1%
Average