Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biophysical Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biophysical Journal
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biophysical Journal
Article . 2013
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biophysical Journal
Article . 2013 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions

Structure-Function Relationship in Human Phospholipid Scramblase 1: Role of C-Terminal α-Helix

Authors: Sanchez-Magraner, Lissete; Posada, Itziar M.D.; Guerin, Diego M.A.; Viguera, Ana R.; Andraka, Nagore; Luis R. Arrondo, Jose; Monaco, Hugo L.; +1 Authors

Structure-Function Relationship in Human Phospholipid Scramblase 1: Role of C-Terminal α-Helix

Abstract

Phospholipid scramblases (PLSCRs) constitute a group of homologous bidirectional lipid translocators that are conserved in all eukaryotic organisms. In humans, four related PLSCR genes have been identified, named hPLSCR1- hPLSCR4. The first described member and prototype of this family is hPLSCR1, a 37 kDa type II endofacial membrane protein, that is multipalmitoylated and widely expressed in most human tissues. hPLSCR1 is involved in the rapid calcium dependent translocation of plasma membrane phospholipids, although neither the detailed calcium-induced conformational change nor the mechanism of phospholipid scrambling are known yet. In addition to this role hPLSCR1 may also function in regulating processes including signaling, cell differentiation, apoptosis, injury, cell proliferation and transcription.In the present contribution we have studied the role of the C-terminal α-helix (30 aa residues) in the structure-function relationship of hPLSCR1. With that aim a truncated mutant was constructed lacking the C-terminal α-helix (hPLSCR1αC290). A combination of structural and functional studies (fluorescence and infrared spectroscopies, partial trypsin digestion and functional characterization using liposomes) reveal that the α-helix is crucial for the scramblase activity. Furthermore in the presence of calcium the truncated mutant displays a much lower affinity for this ion and, although it still undergoes conformational changes, it requires higher Ca2+ concentrations than the wild type. Calcium binding increases the truncated mutant stability, inducing protection against trypsin digestion and thermal denaturation.

Keywords

Biophysics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
hybrid