Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

The cyclic AMP effector Epac integrates pro- and anti-fibrotic signals

Authors: Utako, Yokoyama; Hemal H, Patel; N Chin, Lai; Nakon, Aroonsakool; David M, Roth; Paul A, Insel;

The cyclic AMP effector Epac integrates pro- and anti-fibrotic signals

Abstract

Scar formation occurs during the late stages of the inflammatory response but, when excessive, produces fibrosis that can lead to functional and structural damage of tissues. Here, we show that the profibrogenic agonist, transforming growth factor β1, transcriptionally decreases expression of Exchange protein activated by cAMP 1 (Epac1) in fibroblasts/fibroblast-like cells from multiple tissues (i.e., cardiac, lung, and skin fibroblasts and hepatic stellate cells). Overexpression of Epac1 inhibits transforming growth factor β1-induced collagen synthesis, indicating that a decrease of Epac1 expression appears to be necessary for the fibrogenic phenotype, an idea supported by evidence that Epac1 expression in cardiac fibroblasts is inhibited after myocardial infarction. Epac and protein kinase A, a second mediator of cAMP action, have opposite effects on migration but both inhibit synthesis of collagen and DNA by fibroblasts. Epac is preferentially activated by low concentrations of cAMP and stimulates migration via the small G protein Rap1 but inhibits collagen synthesis in a Rap1-independent manner. The regulation of Epac expression and activation thus appear to be critical for the integration of pro- and anti-fibrotic signals and for the regulation of fibroblast function.

Keywords

Male, Myocardium, Myocardial Infarction, DNA, Fibroblasts, Cyclic AMP-Dependent Protein Kinases, Fibrosis, Collagen Type I, Rats, Enzyme Activation, Rats, Sprague-Dawley, Mice, Collagen Type III, Phenotype, Cell Movement, Cyclic AMP, Animals, Guanine Nucleotide Exchange Factors, Humans, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    140
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
140
Top 10%
Top 10%
Top 10%
bronze