Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Evidence-Based Compl...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Evidence-Based Complementary and Alternative Medicine
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.21203/rs.3....
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.researchsquare.com...
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions

Scorpion Venom Polypeptide Inhibits Pulmonary Epithelial-Mesenchymal Transition in Systemic Sclerosis-Interstitial Lung Disease Model Mice by Intervening TGF-β1/Smad Signaling Pathway

Authors: Yan Zhang; Liping Xu; Qiang Chen; Tianrong Guan; Na Lin; Danyang Xu; Lihong Lu; +2 Authors

Scorpion Venom Polypeptide Inhibits Pulmonary Epithelial-Mesenchymal Transition in Systemic Sclerosis-Interstitial Lung Disease Model Mice by Intervening TGF-β1/Smad Signaling Pathway

Abstract

Objective. Interstitial lung disease (ILD) is an important complication of systemic sclerosis (SSc). The aim of this study was to investigate the effect and possible mechanism of polypeptide extract of scorpion venom (PESV) on SSc-ILD. Methods. C57/BL6 mice were injected with bleomycin to establish a SSc-ILD model. Different concentrations of PESV solution were administered to SSc-ILD mice, and dexamethasone was used as a positive control. H&E staining and Masson staining were used to observe the pathological changes. The TGF-β1 expression level was detected by immunohistochemistry. The expression of epithelial-mesenchymal transition (EMT)-related proteins was detected by Western blot, and the expression of TGF-β1/Smad pathway-related proteins was also detected. The content of inflammatory cytokines in serum and BALF was determined by ELISA. Results. Pathological analysis showed that PESV could alleviate SSc-ILD-induced pulmonary inflammation and fibrosis. Compared with the model group, the content of inflammatory cytokines IL-6 and TNF-α significantly decreased after PESV treatment. PESV could increase the expression of epithelial marker (E-cadherin) and reduce the expression of interstitial markers (collagen I, vimentin, N-cadherin, and a-SMA). In addition, PESV could reduce the expression level of TGF-β1/Smad pathway-related protein. Conclusion. PESV can attenuate SSc-ILD by regulating EMT, and the effect was linked to the TGF-β1/Smad signaling pathway, which indicated that PESV may serve as a candidate drug for SSc-ILD.

Related Organizations
Keywords

Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold