Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DNA Repairarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DNA Repair
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
DNA Repair
Article . 2004
versions View all 2 versions

AP endonuclease and poly(ADP-ribose) polymerase-1 interact with the same base excision repair intermediate

Authors: Cheryl, Cistulli; Olga I, Lavrik; Rajendra, Prasad; Esther, Hou; Samuel H, Wilson;

AP endonuclease and poly(ADP-ribose) polymerase-1 interact with the same base excision repair intermediate

Abstract

Base excision repair (BER) is a defense system that protects cells from deleterious effects secondary to modified or missing DNA bases. BER is known to involve apurinic/apyrimidinic endonuclease (APE) and DNA polymerase ss (ss-pol) among other enzymes, and recent studies have suggested that poly(ADP-ribose) polymerase-1 (PARP-1) also plays a role by virtue of its binding to BER intermediates. The main role of APE is cleavage of the DNA backbone at abasic sites, and the enzyme also can catalyze 3'- to 5'-exonuclease activity at the cleaved abasic site. Photocross-linking studies with mouse embryonic fibroblast (MEF) cell extracts described here indicated that APE and PARP-1 interact with the same APE-cleaved abasic site BER intermediate. The model BER intermediate used includes a synthetic abasic site sugar, i.e. tetrahydrofuran (THF), in place of the natural deoxyribose. APE cross-linked efficiently with this intermediate, but not with a molecule lacking the 5'-THF phosphate group, and the same property was demonstrated for PARP-1. The addition of purified APE to the MEF extract reduced the amount of PARP-1 cross-linked to the BER intermediate, suggesting that APE can compete with PARP-1. APE and PARP-1 were antagonists of each other in in vitro BER related reactions on this model BER intermediate. These results suggest that PARP-1 and APE can interact with the same BER intermediate and that competition between these two proteins may influence their respective BER related functions.

Keywords

Mice, Knockout, DNA Repair, Homozygote, Photoaffinity Labels, Fibroblasts, Binding, Competitive, Mice, Cross-Linking Reagents, DNA-(Apurinic or Apyrimidinic Site) Lyase, Animals, Poly(ADP-ribose) Polymerases, Furans, Cells, Cultured, DNA Polymerase beta

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    83
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
83
Top 10%
Top 10%
Top 10%