Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Circulation Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DIGITAL.CSIC
Article . 2015 . Peer-reviewed
Data sources: DIGITAL.CSIC
Circulation Research
Article . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions

Thymidine Phosphorylase Participates in Platelet Signaling and Promotes Thrombosis

Authors: Li, Wei; Gigante, Alba; Peréz-Pérez, María-Jesús; Yue, H.; Hirano, Michio; McIntyre, T. M.; Silverstein, R. L.;

Thymidine Phosphorylase Participates in Platelet Signaling and Promotes Thrombosis

Abstract

Rationale : Platelets contain abundant thymidine phosphorylase (TYMP), which is highly expressed in diseases with high risk of thrombosis, such as atherosclerosis and type II diabetes mellitus. Objective : To test the hypothesis that TYMP participates in platelet signaling and promotes thrombosis. Methods and Results : By using a ferric chloride (FeCl 3 )–induced carotid artery injury thrombosis model, we found time to blood flow cessation was significantly prolonged in Tymp −/− and Tymp +/− mice compared with wild-type mice. Bone marrow transplantation and platelet transfusion studies demonstrated that platelet TYMP was responsible for the antithrombotic phenomenon in the TYMP-deficient mice. Collagen-, collagen-related peptide–, adenosine diphosphate-, or thrombin-induced platelet aggregation were significantly attenuated in Tymp +/− and Tymp −/− platelets, and in wild type or human platelets pretreated with TYMP inhibitor KIN59. Tymp deficiency also significantly decreased agonist-induced P-selectin expression. TYMP contains an N-terminal SH3 domain-binding proline-rich motif and forms a complex with the tyrosine kinases Lyn, Fyn, and Yes in platelets. TYMP-associated Lyn was inactive in resting platelets, and TYMP trapped and diminished active Lyn after collagen stimulation. Tymp/Lyn double haploinsufficiency diminished the antithrombotic phenotype of Tymp +/− mice. TYMP deletion or inhibition of TYMP with KIN59 dramatically increased platelet-endothelial cell adhesion molecule 1 tyrosine phosphorylation and diminished collagen-related peptide– or collagen-induced AKT phosphorylation. In vivo administration of KIN59 significantly inhibited FeCl 3 -induced carotid artery thrombosis without affecting hemostasis. Conclusions : TYMP participates in multiple platelet signaling pathways and regulates platelet activation and thrombosis. Targeting TYMP might be a novel antiplatelet and antithrombosis therapy.

Keywords

Blood Platelets, Male, Platelet Aggregation, Molecular Sequence Data, Haploinsufficiency, Platelet Transfusion, Proto-Oncogene Proteins c-fyn, Ferric Compounds, Chlorides, Animals, Humans, Amino Acid Sequence, Enzyme Inhibitors, Phosphorylation, Bone Marrow Transplantation, Mice, Knockout, Mice, Inbred C57BL, Phenotype, Proto-Oncogene Proteins c-akt, Platelet Aggregation Inhibitors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 64
    download downloads 19
  • 64
    views
    19
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
41
Top 10%
Top 10%
Average
64
19
Green
bronze