Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions

Reduced DOCK4 expression leads to erythroid dysplasia in myelodysplastic syndromes

Authors: Sriram, Sundaravel; Ryan, Duggan; Tushar, Bhagat; David L, Ebenezer; Hui, Liu; Yiting, Yu; Matthias, Bartenstein; +17 Authors

Reduced DOCK4 expression leads to erythroid dysplasia in myelodysplastic syndromes

Abstract

Significance Anemia is the predominant clinical manifestation of myelodysplastic syndromes (MDS). Genes that are aberrantly expressed and/or mutated that lead to the dysplastic erythroid morphology seen in −7/del(7q) MDS have not been identified. In this study, we show that reduced expression of dedicator of cytokinesis 4 ( DOCK4 ) causes dysplasia by disrupting the actin cytoskeleton in developing red blood cells. In addition, our identification of the molecular pathway that leads to morphological defects in this type of MDS provides potential therapeutic targets downstream of DOCK4 that can be exploited to reverse the dysplasia in the erythroid lineage. Furthermore, we developed a novel single-cell multispectral flow cytometry assay for evaluation of disrupted F-actin filaments, which can be used for potential early detection of dysplastic cells in MDS.

Keywords

Male, rac1 GTP-Binding Protein, Erythroblasts, GTPase-Activating Proteins, Zebrafish Proteins, Actins, Gene Expression Regulation, Myelodysplastic Syndromes, Animals, Humans, Calmodulin-Binding Proteins, Female, Zebrafish

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Top 10%
bronze