Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1989 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Molecular Cloning and Sequencing of Genomic DNA Encoding Aminopeptidase I from Saccharomyces cerevisiae

Authors: Y H, Chang; J A, Smith;

Molecular Cloning and Sequencing of Genomic DNA Encoding Aminopeptidase I from Saccharomyces cerevisiae

Abstract

Yeast aminopeptidase I is a vacuolar enzyme, which catalyzes the removal of amino acids from the NH2 terminus of peptides and proteins (Frey, J., and Rohm, K-H. (1978) Biochim. Biophys. Acta 527, 31-41). A yeast genomic DNA encoding aminopeptidase I was cloned from a yeast EMBL3A library and sequenced. The DNA sequence encodes a precursor protein containing 514 amino acid residues. The "mature" protein, whose NH2-terminal sequence was confirmed by automated Edman degradation, consists, based only on the DNA sequence, of 469 amino acids. A 45-residue presequence contains positively and negatively charged as well as hydrophobic residues, and its NH2-terminal residues could be arrayed in an amphiphilic alpha-helix. This presequence differs from the signal sequences which direct proteins across bacterial plasma membranes and endoplasmic reticulum or into mitochondria. It remains to be established how this unique presequence targets aminopeptidase I to yeast vacuoles and how this sorting utilizes classical protein secretory pathways. Further, the aminopeptidase I gene, localized previously by genetic mapping to yeast chromosome XI and called the LAP4 gene (Trumbly, R. J., and Bradley, G. (1983) J. Bacteriol. 156, 36-48), was determined by DNA blot analyses to be a single copy gene located on chromosome XI.

Related Organizations
Keywords

Saccharomyces cerevisiae Proteins, Base Sequence, Protein Conformation, Blotting, Western, Genes, Fungal, Molecular Sequence Data, Chromosome Mapping, Saccharomyces cerevisiae, Aminopeptidases, Blotting, Southern, Amino Acid Sequence, Cloning, Molecular, Protein Precursors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 10%
Top 10%
Top 10%
gold