Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publikationenserver ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Neurochemistry
Article . 2007 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions

Kir4.1 channels regulate swelling of astroglial processes in experimental spinal cord edema

Authors: Dibaj, Payam; Kaiser, Melanie; Hirrlinger, Johannes; Kirchhoff, Frank; Neusch, Clemens;

Kir4.1 channels regulate swelling of astroglial processes in experimental spinal cord edema

Abstract

AbstractIn glial cells, inwardly rectifying K+ channels (Kir) control extracellular [K+]o homeostasis by uptake of K+ from the extracellular space and release of K+ into the microvasculature. Kir channels were also recently implicated in K+‐associated water influx and cell swelling. We studied the time‐dependent expression and functional implication of the glial Kir4.1 channel for astroglial swelling in a spinal cord edema model. In this CNS region, Kir4.1 is expressed on astrocytes from the second postnatal week on and co‐localizes with aquaporin 4 (AQP4). Swelling of individual astrocytes in response to osmotic stress and to pharmacological Kir blockade were analyzed by time‐lapse‐two‐photon laser‐scanning microscopy in situ. Application of 30% hypotonic solution induced astroglial soma swelling whereas no swelling was observed on astroglial processes or endfeet. Co‐application of hypotonic solution and Ba2+, a Kir channel blocker, induced prominent swelling of astroglial processes. In Kir4.1−/− mice, however, somatic as well as process swelling was observed upon application of 30% hypotonic solutions. No additional effect was provoked upon co‐application with Ba2+. Our experiments show that Kir channels prevent glial process swelling under osmotic stress. The underlying Kir channel subunit that controls glial process swelling is Kir4.1, whereas changes of the glial soma are not substantially related to Kir4.1.

Keywords

Aquaporin 4, Mice, Knockout, Microscopy, Confocal, Blotting, Western, Fluorescent Antibody Technique, Water, Immunohistochemistry, Spinal Cord Diseases, Mice, Osmotic Pressure, Kcnj10 Channel, Astrocytes, Glial Fibrillary Acidic Protein, Image Processing, Computer-Assisted, Animals, Edema, Humans, Potassium Channels, Inwardly Rectifying, Neuroglia

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 10%
Top 10%
Green